精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线,过点的动直线交抛物线于两点

(1)当恰为的中点时,求直线的方程;

(2)抛物线上是否存在一个定点,使得以弦为直径的圆恒过点?若存在,求出点的坐标;若不存在,请说明理由

【答案】(1);(2)见解析

【解析】

(1)利用点差可求,从而得到直线的方程.

(2)设,设,联立直线方程和抛物线方程后消元可得,利用及韦达定理可以得到恒成立,故求得.

(1)设两点坐标分别为,当恰为的中点时,

显然,故,又,故

则直线的方程为

(2)假设存在定点,设,当直线斜率存在时,设,联立

整理得

由以弦为直径的圆恒过点

,即

整理得

即当时,恒有,故存在定点满足题意;

当直线斜率不存在时,,不妨令,也满足

综上所述,存在定点,使得以弦为直径的圆恒过点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于40分钟的观众称为体育迷.若抽取100人中有女性55人,其中女体育迷有10人,完成答题卡中的列联表并判断能否在犯错误概率不超过0.05的前提下认为体育迷与性别有关系?

非体育迷

体育迷

合计

10

55

合计

附表及公式:.

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左、右焦点分别为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.

(1)若点的坐标为,求椭圆的方程及的值;

(2)若,求椭圆的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学发展史知识测验后,甲、乙、丙三人对成绩进行预测:

甲说:我的成绩比乙高;

乙说:丙的成绩比我和甲的都高;

丙说:我的成绩比乙高.

成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人中预测正确的是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】足球是世界普及率最高的运动,我国大力发展校园足球.为了解本地区足球特色学校的发展状况,社会调查小组得到如下统计数据:

年份x

2014

2015

2016

2017

2018

足球特色学校y(百个)

0.30

0.60

1.00

1.40

1.70

1)根据上表数据,计算yx的相关系数r,并说明yx的线性相关性强弱.

(已知:,则认为yx线性相关性很强;,则认为yx线性相关性一般;,则认为yx线性相关性较):

2)求y关于x的线性回归方程,并预测A地区2020年足球特色学校的个数(精确到个).

参考公式和数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个不透明的袋子,装有4个大小形状完全相同的小球,球上分别标有数字1234.现按如下两种方式随机取球两次,每种方式中第1次取到球的编号记为,第2次取到球的编号记为.

1)若逐个不放回地取球,求是奇数的概率;

2)若第1次取完球后将球再放回袋中,然后进行第2次取球,求直线与双曲线有公共点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在上的函数满足如下条件:①函数的图象关于轴对称;②对于任意;③当时,;④函数,若过点的直线与函数的图象在上恰有8个交点,则直线斜率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好某项运动,得到如表的列联表:

总计

爱好

40

20

60

不爱好

20

30

50

总计

60

50

110

0.050

0.010

0.001

k

3.841

6.635

10.828

算得,.见附表:参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

C. 有99%以上的把握认为“爱好该项运动与性别有关”

D. 有99%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

同步练习册答案