精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
b
,其中向量
a
=(
3
,-1)
b
=(sinx,cosx)
,x∈R
(1)求使f(x)取得最大值时,向量
a
b
的夹角;
(2)若A={x|f(x)≥1},B={x|-π≤x≤π},求A∩B;
(3)若x∈{A,B,C},且A,B,C是某个锐角三角形的三个内角,求证;存在x0∈{A,B,C},使得f(x0)≤1.
分析:(1)先表示函数f(x)的解析式并化简,找到f(x)取最大值时x的值,进而确定两个向量的坐标,再求夹角即可
(2)先求集合A,再给k赋值,与B取交集即可
(3)先假设存在这样的角x0,然后再求出x0的范围,把问题转化为求函数的最大值问题,即可得证
解答:解:∵
a
=(
3
,-1),
b
=(sinx,cosx)

∴f(x)=
a
b
=
3
sinx-cosx=2sin(x-
π
6
)

(1)当sin(x-
π
6
) =1

x-
π
6
=2kπ+
π
2
,即x=2kπ+
3
(k∈Z)
时,f(x)取得最大值
此时
b
=(
3
2
,-
1
2
)

cos<
a
b
>  =
a
b
|
a
| |
b
|
=
3
2
+
1
2
2×1
=1

a
b
>  =0

(2)由f(x)≥1,得sin(x-
π
6
) ≥
1
2

2kπ+
π
6
≤x-
π
6
≤ 2kπ+
6
 (k∈Z)

2kπ+
π
3
≤x≤ 2kπ+π   (k∈Z)

A={x|2kπ+
π
3
≤x≤2kπ+π,k∈Z}

又B={x|-π≤x≤π}
∴A∩B=[
π
3
,π]

证明:(3)∵x∈{A,B,C},且A,B,C是某个锐角三角形的三个内角,且A+B+C=π
设A、B、C中的最小角x0∈{A,B,C}
0<x0
π
3

-
π
6
x0-
π
6
≤ 
π
6

f(x0) =2sin(x0-
π
6
)  ≤2×
1
2
=1

∴存在x0∈{A,B,C},使得f(x0)≤1
点评:本题考查和角公式的应用、正弦型函数的性质和向量的数量积,注意和角公式和夹角公式的应用.属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a?b,其中向量
a
=(m,cos2x),
b
=(1+sin2x,1),x∈R,且y=f(x)的图象经过点(
π
4
,2)

(1)求实数m的值;
(2)求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a-
22x+1

(1)求证:不论a为何实数f(x)总为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)若不等式f(x)+a>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(a-2)x,(x≥2)
(
1
2
)
x
 
-1,(x<2)
an=f(n)
,若数列{an}是单调递减数列,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).设函数f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函数f(x)在区间[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(5
3
cosx,cosx)
b
=(sinx,2cosx)
,其中x∈[
π
6
π
2
]
,设函数f(x)=
a
b
+|
b
|2+
3
2

(1)求函数f(x)的值域;        
(2)若f(x)=5,求x的值.

查看答案和解析>>

同步练习册答案