精英家教网 > 高中数学 > 题目详情
3.如图.圆锥的轴截面SAB为等腰直角三角形,Q为底面圆周上-点.
(1)若QB的中点为C,求证:平面SOC⊥平面SBQ.
(2)若∠AOQ=120°,QB=$\sqrt{3}$,求圆锥的表面积.

分析 (1)如图所示,由OB=OQ,QC=CB,利用等腰三角形的性质可得QB⊥OC.利用线面垂直的性质可得:BQ⊥SO.于是QB⊥平面SOC,可得QB⊥OH.再由线面垂直和面面垂直的判定定理,即可证明.
(2)由∠AOQ=120°,可得∠BOQ=60°.又QB=$\sqrt{3}$,可得OQ=$\sqrt{3}$.在等腰Rt△SAB中,AB=2$\sqrt{3}$,可得SA=SB=$\sqrt{6}$,代入圆锥表面积公式,可得答案.

解答 证明:(1)如图所示,
∵OB=OQ,QC=CB,
∴QB⊥OC,
又SO⊥底面OBQ,
∴BQ⊥SO.
又SO∩OC=O,
∴QB⊥平面SOC.
∴QB⊥OH.
又OH⊥SC,SC∩QB=C,
∴OH⊥平面SBQ.
又∵OH?平面SOC,
∴平面SOC⊥平面SBQ;
(2)解:∵∠AOQ=120°,
∴∠BOQ=60°.
又QB=$\sqrt{3}$,
∴OQ=$\sqrt{3}$.
在等腰Rt△SAB中,AB=2$\sqrt{3}$,
∴SA=SB=$\sqrt{6}$,
∴圆锥的表面积S=π×$\sqrt{3}×(\sqrt{3}+\sqrt{6)}$=(1+$\sqrt{2}$)3π.

点评 本题考查了等腰三角形的性质、直角三角形的性质、线面垂直和面面垂直的判定与性质定理、圆锥的表面积计算公式,考查了空间想象能力、推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知$cos(\frac{π}{6}-a)=\frac{{\sqrt{3}}}{3}$,求$cos(\frac{5π}{6}+a)-{sin^2}(a-\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是(  )
A.25πB.125πC.50πD.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在R上的偶函数f(x)满足:f(0)=5,x>0时,f(x)=x+$\frac{4}{x}$.
(1)求当x≤0时.f(x)的解析式;
(2)请写出函数f(x)的单调区间(不需证明);
(3)当x∈[-1,t]时,函数f(x)的取值范围是[5,+∞),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.数列{an}的通项公式有:①an=3;②an=2n2;③an=4n-3.其中数列{an}为等差数列的通项公式是①③(把所有符合题意的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α、β、γ是平面,a、b是直线,且α∩β=a,α⊥γ,β⊥γ,b?γ,则(  )
A.a∥bB.a⊥b
C.a与b相交D.不能确定a与b的关系

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求证:如果一条直线经过平面内的一点,又经过平面外的一点,则此直线和平面相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=x2+3${∫}_{0}^{1}$f(x)dx,则${∫}_{0}^{1}$f(x)dx=(  )
A.4B.-6C.-$\frac{1}{6}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若函数f(x)=x2+2ax-a-1(x∈[0,2])的最小值为-2,求实数a的值.

查看答案和解析>>

同步练习册答案