精英家教网 > 高中数学 > 题目详情

【题目】定义一:对于一个函数,若存在两条距离为的直线,使得时,恒成立,则称函数内有一个宽度为的通道.

定义二:若一个函数对于任意给定的正数,都存在一个实数,使得函数内有一个宽度为的通道,则称在正无穷处有永恒通道.

下列函数. 其中在正无穷处有永恒通道的函数序号是 .

【答案】②③⑤

【解析】试题分析:,随着的增大,函数值也在增大,无渐近线,故不存在一个实数,使得函数内有一个宽度为的通道,故在正无穷处无永恒通道;,随着的增大,函数值趋近于,对于任意给定的正数,都存在一个实数,使得函数内有一个宽度为的通道,故在正无穷处有永恒通道;,随着的增大,函数值也在增大,有两条渐近线,对于任意给定的正数,都存在一个实数,使得函数内有一个宽度为的通道,故在正无穷处有永恒通道;,随着的增大,函数值也在增大,无渐近线,故不存在一个实数,使得函数内有一个宽度为的通道,故在正无穷处无永恒通道;,随着的增大,函数值趋近于,趋近于轴,对于任意给定的正数,都存在一个实数,使得函数内有一个宽度为的通道,故在正无穷处有永恒通道.故答案为:②③⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OBCD是两条互相平行的笔直公路,且均与笔直公路OC垂直(公路宽度忽略不计),半径OC1千米的扇形COA为该市某一景点区域,当地政府为缓解景点周边的交通压力,欲在圆弧AC上新增一个入口E(点E不与AC重合),并在E点建一段与圆弧相切(E为切点)的笔直公路与OBCD分别交于MN.当公路建成后,计划将所围成的区域在景点之外的部分建成停车场(图中阴影部分),设∠CONθ,停车场面积为S平方千米.

1)求函数Sfθ)的解析式,并写出函数的定义域;

2)为对该计划进行可行性研究,需要预知所建停车场至少有多少面积,请计算当θ为何值时,S有最小值,并求出该最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,圆,点是圆上一动点,线段的中垂线与线段交于点.

1)求动点的轨迹的方程;

2)若直线与曲线相交于两点,且存在点(其中不共线),使得轴平分,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】信息科技的进步和互联网商业模式的兴起,全方位地改变了大家金融消费的习惯和金融交易模式,现在银行的大部分业务都可以通过智能终端设备完成,多家银行职员人数在悄然减少.某银行现有职员320人,平均每人每年可创利20万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.2万元,但银行需付下岗职员每人每年6万元的生活费,并且该银行正常运转所需人数不得小于现有职员的,为使裁员后获得的经济效益最大,该银行应裁员多少人?此时银行所获得的最大经济效益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为2和4的正方形, = 4且 ⊥底面,点的中点.

(Ⅰ)求证: ;

(Ⅱ)在边上找一点,使∥面

并求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,.

(1)当时,求的大小;

(2)求的面积S的最小值及使得S取最小值时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)讨论的单调性;

(2)若,且在区间上的最小值为,求的值.

查看答案和解析>>

同步练习册答案