精英家教网 > 高中数学 > 题目详情
定义在实数集R上的函数f(x),对任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0.
求证:f(x)是偶函数.
考点:抽象函数及其应用
专题:证明题,函数的性质及应用
分析:令x=y=0代入表达式,可得f(0)=1.再令x=0,y不变,即可获得f(-y)与f(y)之间的关系,从而获得函数的奇偶性.
解答: 证明:令x=y=0,则有f(0)+f(0)=2f(0)•f(0),
即2f(0)=2f(0)•f(0),
由于f(0)≠0,
即有f(0)=1.
令x=0,y=t,
则有f(t)+f(-t)=2f(0)f(t),
即有f(t)+f(-t)=2f(t),
即f(-t)=f(t),
即为f(-x)=f(x).
故y=f(x)是偶函数.
点评:本题考查的是抽象函数及其应用类问题.在解答的过程当中充分体现了抽象表达式的应用能力、特值的问题处理技巧以及必要的计算能力.同时函数的奇偶性定义也在题目中得到了体现.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线为y=
3
x,右焦点F到x=
a2
c
的距离为
3
2
,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1,F2,右顶点为A,上顶点为B,若椭圆C的中点到直线AB的距离为
6
6
|F1F2|,则椭圆C的离心率e=(  )
A、
2
2
B、
3
2
C、
5
2
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x2+
1
x3
)5
展开式中的常数项为
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a2n=n-an,a2n+1=an+1,则a100=(  )
A、30B、31C、32D、33

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,以O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为θ=
π
4
,曲线C的参数方程为
x=
2
cosθ
y=sinθ

(1)写出直线l与曲线C的直角坐标方程;
(2)过点M平行于直线l1的直线与曲线C交于A、B两点,若|MA|•|MB|=
8
3
,求点M轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名,按年龄所在的区间分组:第1组:[20,25);第2组:[25,30);第3组:[30,35);第4组:[35,40);第5组:[40,45].得到的频率分布直方图如下图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在满足条件(1)时,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,若点P为正方体AC1的棱A1B1的中点,求截面PC1D和AA1B1B所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
|sinx|
sinx
+
cosx
|cosx|

查看答案和解析>>

同步练习册答案