精英家教网 > 高中数学 > 题目详情

设双曲线H: -=1(a>0,b>0)满足如下条件:①ab=;②直线l过右焦点F,斜率为,交y轴于点P,线段PF交H于Q,且|PQ|∶|QF|=2∶1.求双曲线的方程.

x2-=1.


解析:

设c=,则F(c,0),l的方程y=(x-c),

令x=0,得P(0,-c).

设Q(x0,y0),则由λ==2,有x0=c,y0=-c.

∵Q在H上,

(c)2-()2=1,

(1+)-(+1)=1.

令t=,则上式变为(1+t)-(1+)=1,

16t2-41t-21=0.

∴t=3,t=-(舍去).

=3,又ab=,

∴b2=3,a2=1.

∴H的方程是x2-=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线中心在原点,焦点在x轴上,实轴长为2.一条斜率为1的直线经过双曲线的右焦点与双曲线相交于A、B两点,以AB为直径的圆与双曲线的右准线相交于M、N.
(1)若双曲线的离心率2,求圆的半径;
(2)设AB中点为H,若
HM
HN
=-
16
3
,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
2
-y2=1
的左、右顶点分别为A1、A2,垂直于x轴的直线a与双曲线C交于不同的两点S、T.
(1)求直线A1S与直线A2T的交点H的轨迹E的方程;
(2)设A,B是曲线E上的两个动点,线段AB的中垂线与曲线E交于P,Q两点,直线l:x=
1
2
,线段AB的中点M在直线l上,若F(1,0),求
FP
FQ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线H: -=1(a>0,b>0)满足如下条件:①ab=;②直线l过右焦点F,斜率为,交y轴于点P,线段PF交H于Q,且|PQ|∶|QF|=2∶1.求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2010年单元测试卷(3)(解析版) 题型:解答题

已知双曲线中心在原点,焦点在x轴上,实轴长为2.一条斜率为1的直线经过双曲线的右焦点与双曲线相交于A、B两点,以AB为直径的圆与双曲线的右准线相交于M、N.
(1)若双曲线的离心率2,求圆的半径;
(2)设AB中点为H,若,求双曲线方程.

查看答案和解析>>

同步练习册答案