精英家教网 > 高中数学 > 题目详情

【题目】椭圆)的左、右焦点分别为,过作垂直于轴的直线与椭圆在第一象限交于点,若,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点关于轴的对称点在抛物线上,是否存在直线与椭圆交于,使得的中点落在直线上,并且与抛物线相切,若直线存在,求出的方程,若不存在,说明理由.

【答案】(1)(2)

【解析】试题分析:(1)根据题意得到进而求得椭圆方程;(2)设直线与椭圆的交点坐标为满足椭圆方程两式作差可得中点落在直线上得,再联立直线l和抛物线,得到二次方程,在判断判别式的正负即可.

解析:

(Ⅰ)解:由题意可知解得椭圆方程是.

(Ⅱ)由(Ⅰ)可知则有代入可得抛物线方程是

若直线斜率存在,设直线与椭圆的交点坐标为满足椭圆方程两式作差可得的中点落在直线上则有

代入可得

直线方程可以设为与抛物线方程联立消元可得方程

直线与抛物线相切则有,则直线的方程为,与椭圆方程联立:消元可得方程

,所以直线满足题意.

若直线斜率不存在时,直线满足题意.

所以,综上这样的直线存在,方程是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是平行四边形,分别是的中点.

)证明:平面平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴正方向建立平面直角坐标系,曲线的直角坐标方程是为参数).

(Ⅰ)将曲线的参数方程化为普通方程;

(Ⅱ)求曲线与曲线交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,的中点,.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为过点的直线的参数方程为为参数),直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2),的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求的极值;

(2)若有两个不同的极值点 ,求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试讨论的单调性;

(2)若有两个极值点 ,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知是直角梯形 平面.

(1)证明:

2的中点,证明: 平面

(3)若求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

同步练习册答案