精英家教网 > 高中数学 > 题目详情
(2012•鹰潭一模)设函数f(x)=ex(sinx-cosx),若0≤x≤2012π,则函数f(x)的各极大值之和为(  )
分析:先求出其导函数,利用导函数求出其单调区间,进而找到其极大值f(2kπ+π)=e2kπ+π,再利用数列的求和方法来求函数f(x)的各极大值之和即可.
解答:解:∵函数f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′=2exsinx,
∵x∈(2kπ,2kπ+π)时,f′(x)>0,x∈(2kπ+π,2kπ+2π)时,f′(x)<0,
∴x∈(2kπ,2kπ+π)时原函数递增,x∈(2kπ+π,2kπ+2π)时,函数f(x)=ex(sinx-cosx)递减,
故当x=2kπ+π时,f(x)取极大值,
其极大值为f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]
=e2kπ+π×(0-(-1))
=e2kπ+π
又0≤x≤2012π,
∴函数f(x)的各极大值之和S=eπ+e+e+…+e2011π
=
eπ(1-(e)1006)
1-e
=
eπ(1-e2012π)
1-e

故选B.
点评:本题主要考查利用导数研究函数的极值以及等比数列的求和.利用导数求得当x=2kπ+π时,f(x)取极大值是解题的关键,利用导数研究函数的单调性与最值是教学中的重点和难点,学生应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•鹰潭一模)若复数z=(a2-2)+(a+
2
)i
为纯虚数,则
a-i2013
1+ai
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)设D为△ABC的边AB上一点,P为△ABC内一点,且满足
AD
=
λ+1
λ2+
2
λ+1
AB
AP
=
AD
+
λ
λ+1
BC
,λ>0
,则
S△APD
S△ABC
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)设函数f(x)=
|x+1|-|x-2|-a
,若函数f(x)的定义域为R,则实数a的取值范围是
(-∞,-3]
(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭一模)不等式ax2-2x+1<0的解集非空的一个必要而不充分条件是(  )

查看答案和解析>>

同步练习册答案