精英家教网 > 高中数学 > 题目详情

【题目】已知两点,动点轴上的射影是,且.

1)求动点的轨迹方程;

2)设直线的两个斜率存在,分别记为,若,求点的坐标;

3)若经过点的直线与动点的轨迹有两个交点,当时,求直线的方程.

【答案】1;(2;(3.

【解析】

1)设,用坐标表示,求出轨迹方程为

2)由,求出关系,与椭圆方程联立,即可求解;

3)设出直线方程,与椭圆方程联立,消去,得到关于的一元二次方程,由根与系数关系,得出两点纵坐标关系,将转化为纵坐标表示,即可求解.

1)设,则

,即为所求的轨迹方程;

2)直线的两个斜率存在,

联立解得,即

所以坐标为

(3)若直线斜率为0,,不合题意,

设直线方程为

联立,消去

,整理得

所求的直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在双曲线)上,且双曲线的一条渐近线的方程是

(1)求双曲线的方程;

(2)若过点且斜率为的直线与双曲线有两个不同的交点,求实数的取值范围;

(3)设(2)中直线与双曲线交于两个不同的点,若以线段为直径的圆经过坐标原点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.

(1)求证:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示为一正方体的平面展开图,在这个正方体中,有下列四个命题:

AFGC

BDGC成异面直线且夹角为60

BDMN

BG与平面ABCD所成的角为45.

其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类似于平面直角坐标系,我们可以定义平面斜坐标系:设数轴的交点为,与轴正方向同向的单位向量分别是,且的夹角为,其中。由平面向量基本定理,对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标。在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点(2,1),且方向向量为(4,-5)的直线。

(1)若 ,且的夹角为锐角,求实数m的取值范围;

(2)若,已知点和直线 ①求l的一个法向量;②求点A到直线l的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来。某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图。

(1)试求这40人年龄的平均数、中位数的估计值;

(2)(i)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;

(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两颗骰子,计算:

1)事件两颗骰子点数相同的概率;

2)事件点数之和小于7”的概率;

3)事件点数之和等于或大于11”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积SsinC,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》是中国南宋时期杰出数学家秦九韶的著作,其中在卷五“三斜求积”中提出了已知三角形三边,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积”若把以上这段文字写出公式,即若,则

(1)已知的三边,且,求证:的面积

(2)若,求的面积的最大值.

查看答案和解析>>

同步练习册答案