精英家教网 > 高中数学 > 题目详情
已知m∈R,命题p:对任意x∈[0,8],不等式log
1
3
(x+1)≥m2-3m
恒成立;命题q:对任意x∈(0,
2
3
π)
,不等式1+sin2x-cos2x≤2mcos(x-
π
4
)
恒成立.
(Ⅰ)若p为真命题,求m的取值范围;
(Ⅱ)若p且q为假,p或q为真,求m的取值范围.
分析:(I)不等式log
1
3
(x+1)≥m2-3m
恒成立等价于m2-3m小于或等于log
1
3
(x+1)
在x∈[0,8]上的最小值,从而问题转化为利用单调性求函数f(x)=log
1
3
(x+1)
最小值问题,求得m的范围;(2)由(1)得命题p的等价命题,再求命题q的等价命题,根据p且q为假,p或q为真,利用真值表可推得p与q有且只有一个为真,分别解不等式组即可得m的取值范围.
解答:解:(Ⅰ)令f(x)=log
1
3
(x+1)

则f(x)在(-1,+∞)上为减函数,
因为x∈[0,8],所以当x=8时,f(x)min=f(8)=-2.
不等式log
1
3
(x+1)≥m2-3m
恒成立,等价于-2≥m2-3m,
解得1≤m≤2.
(Ⅱ)不等式1+sin2x-cos2x≤2mcos(x-
π
4
)
恒成立,
即2sinx(sinx+cosx)≤
2
m(sinx+cosx)恒成立,
又x∈(0,
2
3
π)
时,sinx+cosx为正,
所以m≥
2
sinx对任意x∈(0,
2
3
π)
恒成立,
∵x∈(0,
2
3
π)
,∴0<sinx≤1,0<
2
sinx≤
2

∴m≥
2

即命题q:m≥
2

若p且q为假,p或q为真,则p与q有且只有一个为真.
若p为真,q为假,那么
1≤m≤2
m<
2
,则1≤m<
2

若p为假,q为真,那么
m<1或m>2
m≥
2
,则m>2.
综上所述,1≤m<
2
或m>2,
即m的取值范围是[1,
2
)∪(2,+∞).
点评:本题考查了不等式恒成立问题的解法,求命题的等价命题的方法,利用真值表判断命题真假的方法和应用,恰当的将恒成立问题转化为求函数最值问题是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x-1|+|x+2|+2x(x∈R),
(1)求函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:不等式|x-1|+|x-m|>1  对任意x∈R恒成立.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命题q:存在x∈[-1,1],使得m≤ax成立
(Ⅰ)若p为真命题,求m的取值范围;
(Ⅱ)当a=1,若p且q为假,p或q为真,求m的取值范围.
(Ⅲ)若a>0且p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,命题p:方程
x
2
 
m-2
+
y
2
 
6-m
=1表示椭圆,命题q:
m
2
 
-5m+6<0
,则命题p是命题q成立的(  )条件.

查看答案和解析>>

同步练习册答案