【题目】已知直线l:与圆O:相交于A,B两个不同的点,且A,B.
(1)当面积最大时,求m的取值,并求出的长度.
(2)判断是否为定值;若是,求出定值的大小;若不是,说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当函数在点处的切线方程为,求函数的解析式;
(2)在(1)的条件下,若是函数的零点,且,求的值;
(3)当时,函数有两个零点,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为1的等边三角形中,分别是,上的点,,是的中点,与交于点,沿折起,得到如图2所示的三棱锥,其中.
(1)求证:平面平面
(2)若为,上的中点,为中点,求异面直线与所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足.
(1)求实数间满足的等量关系;
(2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程;
(3)当点的位置发生变化时,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设, 为线段、上的动点,且,求的最小值.
(B)已知平行四边形中, , , 为的中点, .
(1)求的长;
(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象关于直线对称,且图象上相邻最高点的距离为.
⑴求的解析式;
⑵将的图象向右平移个单位,得到的图象若关于的方程在上有唯一解,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆经过点,,且它的圆心在直线上.
(Ⅰ)求圆的方程;
(Ⅱ)求圆关于直线对称的圆的方程。
(Ⅲ)若点为圆上任意一点,且点,求线段的中点的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com