精英家教网 > 高中数学 > 题目详情

【题目】已知直线l与圆O:相交于A,B两个不同的点,且A,B.

1面积最大时,求m的取值,并求出的长度

2判断是否为定值;若是,求出定值的大小;若不是,说明理由

【答案】12为定值

【解析】

试题分析:1AOB面积最大时,OAOB,即可求m的取值,并求出|AB|的长度.2把直线方程和圆的方程联立后,分别消去x和y得到关于y和x的方程,利用根与系数关系得到αβ的余弦和正弦的积,然后利用和角的三角函数求值

试题解析:1

面积最大时,

得O到AB的距离为;由

此时

2联立直线y=2x+m和圆x+y=1消元得:5x+4mx+m-1=0

=sinαcosβ=, =cosαsinβ=

所以sinα+β= sinαcosβ+cosαsinβ==-4/5

所以为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1当函数在点处的切线方程为,求函数的解析式;

21的条件下,若是函数的零点,且,求的值;

3时,函数有两个零点,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为1的等边三角形中,分别是上的点,的中点,交于点沿折起,得到如图2所示的三棱锥,其中.

1求证:平面平面

2上的中点,中点,求异面直线所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和定点,由圆外一点向圆引切线,切点为,且满足

(1)求实数间满足的等量关系;

(2)若以为圆心的圆与圆有公共点,试求圆的半径最小时圆的方程;

(3)当点的位置发生变化,直线是否过定点,如果是,求出定点坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,平面侧面,且

1)求证:

2)若直线与平面所成角的正弦值为,求锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(A)已知平行四边形中, 的中点, .

(1)求的长;

(2)设 为线段上的动点,且,求的最小值.

(B)已知平行四边形中, 的中点, .

(1)求的长;

(2)设为线段上的动点(不包含端点),求的最小值,以及此时点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于直线对称,且图象上相邻最高点的距离为

⑴求的解析式;

⑵将的图象向右平移个单位,得到的图象若关于的方程上有唯一解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,且它的圆心在直线上.

)求圆的方程;

)求圆关于直线对称的圆的方程。

)若点为圆上任意一点,且点,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量共线,其中AABC的内角.

1)求角的大小;

2)若BC=2,求ABC面积的最大值,并判断S取得最大值时ABC的形状.

查看答案和解析>>

同步练习册答案