精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x2﹣2x﹣3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为

【答案】3﹣2
【解析】解:作出f(x)的图象如图,由图可知,f(x)的对称轴为:x=1.
∵a<b<1且f(a)=f(b),
∴a<﹣1,﹣1<b<1,
则|a2﹣2a﹣3|=|b2﹣2b﹣3|,
即a2﹣2a﹣3=﹣(b2﹣2b﹣3),
则(a﹣1)2+(b﹣1)2=8,a<﹣1,﹣1<b<1,
则(a,b)的轨迹是圆上的一个部分,(黑色部分),
由u=2a+b得b=﹣2a+u,
平移b=﹣2a+u,当直线b=﹣2a+u和圆在第三象限相切时,截距最小,此时u最小,
此时圆心(1,1)到直线2a+b﹣u=0的距离d=
即|u﹣3|=2
得u=3﹣2 或u=3+2 (舍),

所以答案是:3﹣2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆的左顶点为,右焦点为,上顶点为,下顶点为,若直线与直线的交点为

(1)求椭圆的标准方程;

(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:

物体重量(单位g)

1

2

3

4

5

弹簧长度(单位cm)

1.5

3

4

5

6.5


(1)画出散点图;
(2)利用公式(公式见卷首)求y对x的回归直线方程;
(3)预测所挂物体重量为8g时的弹簧长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB分别是椭圆的左、右端点,F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PAPF.

1P的坐标;

2M是椭圆长轴AB上的一点,M到直线AP的距离等于MB,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn,且S4=4S2a2n=2an+1.

(Ⅰ)求数列{an}的通项公式.

(Ⅱ)设数列{bn}的前n项和为TnTnλ(λ为常数)cnb2n(n∈N*)求数列{cn}的前n项和Rn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:(x﹣1)2+(y﹣1)2=4,直线l过点P(2,3)且与圆M交于A,B两点,且|AB|=2
(1)求直线l方程;
(2)设Q(x0 , y0)为圆M上的点,求x02+y02的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以直角坐标系的原点为极点轴的正半轴为极轴且两个坐标系取相等的单位长度.已知直线的参数方程是为参数),曲线的极坐标方程是

(1)写出直线的普通方程和曲线的直角坐标方程

(2)设直线与曲线相交于两点的中点的极坐标为的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱中,,点D是BC的中点,点上,且

1)求证: 平面

2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正四棱锥中, 分别是

的中点,动点在线段上运动时,下列结论中不恒成立的是(  )

A. 异面 B. ∥面

C. D.

查看答案和解析>>

同步练习册答案