精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线的参数方程为为参数),M上的动点,P点满足,点P的轨迹为曲线

I)求的方程;

II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求|AB|

【答案】(1)的参数方程为为参数)(2)

【解析】

(I)本小题属于相关点法求P点的轨迹方程.P(xy),则由条件知M().由于M点在C1上,可得到点P的轨迹方程.

(II)解本小题的关键是先确定的极坐标方程为,曲线的极坐标方程为.然后根据求值即可.

解:(I)设P(xy),则由条件知M().由于M点在C1上,所以

从而的参数方程为为参数)……………… 5

)曲线的极坐标方程为,曲线的极坐标方程为.射线的交点的极径为,射线的交点的极径为

所以.……………… 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若四面体的三组对棱分别相等,即,给出下列结论:

①四面体每组对棱相互垂直;

②四面体每个面的面积相等;

③从四面体每个顶点出发的三条棱两两夹角之和大而小于

④连接四面体每组对棱中点的线段相互垂直平分.

其中正确结论的序号是__________. (写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在(22)上的奇函数.当x(20)时,f(x)=-loga(x)loga(2x),其中a>1.

1)求函数f(x)的零点.

2)若t(02),判断函数f(x)在区间(0t]上是否有最大值和最小值.若有,请求出最大值和最小值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了“冰雪答题王”冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件“从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于分”,估计的概率;

(Ⅲ)在抽取的名学生中,规定:比赛成绩不低于分为“优秀”,比赛成绩低于分为“非优秀”.请将下面的列联表补充完整,并判断是否有的把握认为“比赛成绩是否优秀与性别有关”?

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求直线的直角坐标方程和曲线的普通方程;

(2)若曲线为曲线关于直线的对称曲线,点分别为曲线、曲线上的动点,点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2

时间代号t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,PA⊥底面ABCDAD∥BCABADAC=3,PABC=4,M为线段AD上一点,AM=2MDNPC的中点.

(Ⅰ)证明MN∥平面PAB

(Ⅱ)求四面体N-BCM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数满足,若只在点(4,3)处取得最大值,则的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)当时,若函数的导函数的图象与轴交于 两点,其横坐标分别为 ,线段的中点的横坐标为,且 恰为函数的零点,求证: .

查看答案和解析>>

同步练习册答案