精英家教网 > 高中数学 > 题目详情
12.今年是我校成立111周年的一年,那么十进制的111化为二进制是(  )
A.1 101 101B.11 011 011C.1 101 111D.1 011 100

分析 利用“除k取余法”是将十进制数除以2,然后将商继续除以2,直到商为0,然后将依次所得的余数倒序排列即可得到答案.

解答 解:111÷2=55…1
55÷2=27…1
27÷2=13…1
13÷2=6…1
6÷2=3…0
3÷2=1…1
1÷2=0…1
故111(10)=1101111(2)
故选:C.

点评 本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.(1)sin120°•cos330°+sin(-690°)•cos(-660°)+tan675°=0;
(2)已知5cosθ=sinθ,则tan2θ=-$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,使x2+2x+5≤4;命题q:当$x∈({0,\frac{π}{2}})$时,f(x)=sinx+$\frac{4}{sinx}$的最小值为4.下列命题是真命题的是(  )
A.p∧(¬q)B.(¬p)∧(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在等差数列{an}中,a1=-2015,其前n项和为Sn,若$\frac{{S}_{12}}{12}$-$\frac{{S}_{10}}{10}$=2,则S2015的值等于:-2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C所对的边分别是a、b、c,若a=2,b=2$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$且c<b.
(1)求c的值;
(2)求△ABC的面积及AB边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)已知a,b∈R+,求证:(a+b)(a2+b2)(a3+b3)≥8a3b3
(Ⅱ)已知a、b、c∈R+,且a+b+c=1.求证:$({\frac{1}{a}-1})({\frac{1}{b}-1})({\frac{1}{c}-1})≥8$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)为定义在R上的奇函数,且在(-∞,0)内是增函数,又f(-1)=0,则不等式f(x)>0的解集为{x|x>1或-1<x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知⊙O是边长为2的正方形ABCD的内切圆,P是⊙O上任意一点,则AP+$\sqrt{2}$BP的最小值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,φ>0)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{2}$,且图象上一点为M($\frac{2}{3}π$,-2).
(1)求f(x)的函数解析式;
(2)若x∈[0,$\frac{π}{4}$],求f(x)的最值及相应的值;
(3)将函数f(x)的图象向左平移$\frac{π}{2}$个单位,再将图象上各点的横坐标变为原来的2倍,纵坐标不变,求经以上变换后得到的解析式.

查看答案和解析>>

同步练习册答案