精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人同时参加一次数学测试,共有道选择题,每题均有个选项,答对得分,答错或不答得分.甲和乙都解答了所有的试题,经比较,他们只有道题的选项不同,如果甲最终的得分为分,那么乙的所有可能的得分值组成的集合为____________

【答案】

【解析】

将甲、乙两人选项不同的试题分成两类,一类是在甲答对的题目中,另一类是在甲答错的题目中,再结合乙能否答对的情况,求得乙的所有可能的得分值组成的集合.

甲得分有分,所以甲一共答对题,答错. 将甲、乙两人选项不同的试题分成两类,一类是在甲答对的题目中,另一类是在甲答错的题目中.

若选项不同的试题在甲答对的题目中,则乙的选项错误,故乙一共答对题,答错题,得分为.

若选项不同的试题在甲答错的题目中,

i)若乙答错此题,则乙一共答对题,答错题,得分为.

ii)若乙答对此题,则乙一共答对题,答错题,得分为.

综上所述,乙的所有可能的得分值组成的集合为.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知表示不小于的最小整数,例如.

1)设,,,求实数的取值范围;

2)设在区间上的值域为,集合中元素的个数为,求证:

3)设),,若对于,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图圆锥PO,轴截面PAB是边长为2的等边三角形,过底面圆心O作平行于母线PA的平面,与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到其顶点E的距离为( )

A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数渐近函数

1)证明:函数是函数的渐近函数,并求此时实数p的值;

2)若函数,证明:当时,不是的渐近函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面ABCM BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为. 求:

(1)三棱锥的体积;

(2)异面直线PMAC所成角的大小. (结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乙两人同时参加一次数学测试,共有20道选择题,每题均有4个选项,答对得3,答错或不答得0,甲和乙都解答了所有的试题,经比较,他们只有2道题的选项不同,如果甲最终的得分为54,那么乙的所有可能的得分值组成的集合为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求的方程;

(2)如图,经过椭圆左顶点且斜率为的直线交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点为坐标原点)垂直的直线交直线于点,且面积为,求的值.

查看答案和解析>>

同步练习册答案