【题目】已知函数.
(1)若,且在上单调递减,求的取值范围;
(2)若,且在区间恒成立,求的取值范围;
(3)当,时,求证:在区间至少存在一个,使得.
【答案】(1);(2);(3)证明见解析.
【解析】
(1)根据二次函数在区间上单调递减得出,进而可求得实数的取值范围;
(2)由题意得出对任意的恒成立,利用参变量分离法得出,求出函数在上的最大值,即可得出实数的取值范围;
(3)利用反证法,假设对任意的,均有,根据题意得出,推出矛盾即可.
(1)当时,,该二次函数的图象开口向上,对称轴为直线,
由于函数在单调递减,则有,解得.
因此,实数的取值范围是;
(2)由题可知在恒成立,则且,
令,,则二次函数在时单调递减,
当时,函数取得最大值,即,,
因此,实数的取值范围是;
(3)由题可知,且,函数开口向上,对称轴,
则在单调递减,其值域为,
若不存在使得,即对任意都有,
即,可得,即,与矛盾.
故必存在,使得.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点为,短轴长为2,过定点的直线交椭圆于不同的两点、(点在点,之间).
(1)求椭圆的方程;
(2)若,求实数的取值范围;
(3)若射线交椭圆于点(为原点),求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ex+asinx,x∈(-π,+∞),下列说法正确的是( )
A.当a=1时,f(x)在(0,f(0))处的切线方程为2x-y+1=0
B.当a=1时,f(x)存在唯一极小值点x0且-1<f(x0)<0
C.对任意a>0,f(x)在(-π,+∞)上均存在零点
D.存在a<0,f(x)在(-π,+∞)上有且只有一个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直三棱柱中的底面为等腰直角三角形,,点分别是边,上动点,若直线平面,点为线段的中点,则点的轨迹为
A. 双曲线的一支一部分 B. 圆弧一部分
C. 线段去掉一个端点 D. 抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.
(1)求获得复赛资格应划定的最低分数线;
(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?
(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,为.若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记.
(1)试用表示的长;
(2)试确定点的位置,使两条栈道长度之和最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出,的数据)和频率分布直方图.
(1)求分数在的频率及全班人数;
(2)求频率分布直方图中的;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们射击成绩的分布列如下表所示.
射手甲 | 射手乙 | ||||||
环数 | 环数 | ||||||
概率 | 概率 |
(1)若甲射手共有发子弹,一旦命中环就停止射击,求他剩余发子弹的概率;
(2)若甲、乙两名射手各射击次,求次射击中恰有次命中环的概率;
(3)若甲、乙两名射手各射击次,记所得的环数之和为,求的概率分布.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com