精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,且上单调递减,求的取值范围;

2)若,且在区间恒成立,求的取值范围;

3)当时,求证:在区间至少存在一个,使得.

【答案】1;(2;(3)证明见解析.

【解析】

1)根据二次函数在区间上单调递减得出,进而可求得实数的取值范围;

2)由题意得出对任意的恒成立,利用参变量分离法得出,求出函数上的最大值,即可得出实数的取值范围;

3)利用反证法,假设对任意的,均有,根据题意得出,推出矛盾即可.

1)当时,,该二次函数的图象开口向上,对称轴为直线

由于函数单调递减,则有,解得.

因此,实数的取值范围是

2)由题可知恒成立,则,

,则二次函数时单调递减,

时,函数取得最大值,即

因此,实数的取值范围是

3)由题可知,且,函数开口向上,对称轴

单调递减,其值域为

若不存在使得,即对任意都有

,可得,即,与矛盾.

故必存在,使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,短轴长为2,过定点的直线交椭圆于不同的两点(点在点之间).

1)求椭圆的方程;

2)若,求实数的取值范围;

3)若射线交椭圆于点为原点),求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(e为目然对数的底数).

(1)设函数,求函数的最小值;

(2)若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ex+asinxx(π+),下列说法正确的是(

A.a=1时,f(x)(0f(0))处的切线方程为2xy+1=0

B.a=1时,f(x)存在唯一极小值点x0且-1f(x0)0

C.对任意a0f(x)(π+)上均存在零点

D.存在a0f(x)(π+)上有且只有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱中的底面为等腰直角三角形,,点分别是边上动点,若直线平面,点为线段的中点,则点的轨迹为  

A. 双曲线的一支一部分 B. 圆弧一部分

C. 线段去掉一个端点 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.

(1)求获得复赛资格应划定的最低分数线;

(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间各抽取多少人?

(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出的数据)和频率分布直方图.

(1)求分数在的频率及全班人数;

(2)求频率分布直方图中的

(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们射击成绩的分布列如下表所示.

射手甲

射手乙

环数

环数

概率

概率

1)若甲射手共有发子弹,一旦命中环就停止射击,求他剩余发子弹的概率;

2)若甲、乙两名射手各射击,次射击中恰有次命中环的概率;

3)若甲、乙两名射手各射击,记所得的环数之和为,的概率分布.

查看答案和解析>>

同步练习册答案