精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+1(x∈R).
(1)若f(x)可以表示为一个偶函数g(x)与一个奇函数h(x)之和,设h(x)=t,p(t)=g(2x)-2h(x),求p(t)的解析式;
(2)若p(t)≥m2-2m对于x∈[1,2]恒成立,求m的取值范围.
分析:(1)利用f(x)=g(x)+h(x)和f(-x)=g(-x)+h(-x)求出g(x)和h(x)的表达式,再求出p(t)关于t的表达式即可.
(2)先有x∈[1,2]找出t的范围,在把所求问题转化为求p(t)在[
3
2
15
4
]的最小值.让大于等于m2-2m即可.
解答:解:(1)假设f(x)=g(x)+h(x)①,其中g(x)偶函数,h(x)为奇函数,
则有f(-x)=g(-x)+h(-x),即f(-x)=g(x)-h(x)②,
由①②解得g(x)=
1
2
[f(x)+f(-x)],h(x)=
1
2
[f(x)-f(-x)],
∵f(x)定义在R上,∴g(x),h(x)都定义在R上.
∵g(-x)=
1
2
[f(-x)+f(x)]=g(x),h(-x)=12[f(-x)-f(x)]=-h(x).
∴g(x)是偶函数,h(x)是奇函数,
∵f(x)=2x+1
∴g(x)=
1
2
[f(x)+f(-x)]=
1
2
(2x+1+2-x+1)=2x+2-x
h(x)=
1
2
[f(x)-f(-x)]=
1
2
(2x+1-2-x+1)=2x-2-x
由2x-2-x=t,则t∈R,
平方得t2=(2x-2-x2=22x-2-2x-2,
∴g(2x)=22x+2-2x=t2+2,
∴p(t)=t2-2t+2.
(2)∵t=h(x)关于x∈[1,2]单调递增,
3
2
≤t≤
15
4

∴p(t)=t2-2t+2≥m2-2m对于t∈[
3
2
15
4
]恒成立,
∴m2-2m≤(t-1)2+1对于t∈[
3
2
15
4
]成立,
令φ(t)=(t-1)2+1,则∵t∈[
3
2
15
4
],故φ(t)单调递增,
φ(t)min=φ(
3
2
)=
5
4

∴m2-2m≤
5
4

解得-
1
2
≤m≤
5
2
点评:本题是在考查指数函数的基础上对函数的恒成立问题,函数奇偶性以及一元二次方程根的判断的综合考查,是一道综合性很强的难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案