精英家教网 > 高中数学 > 题目详情

【题目】正数数列{an}的前n项和为Sn , 已知对于任意的n∈Z+ , 均有Sn与1正的等比中项等于an与1的等差中项.
(1)试求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

【答案】
(1)解:由题意得: ,故 …①,又 …②,

②﹣①得: ,整理得:(an+1+an)(an+1﹣an﹣2)=0.

由已知an>0,∴an+1+an>0,故an+1﹣an﹣2=0,

即an+1﹣an=2,所以数列{an}为公差d=2的等差数列.

又由 可得:a1=1,∴an=1+(n﹣1)2=2n﹣1


(2)解:由题意可得

∴Tn=b1+b2+…+bn= [1﹣ + +…+ = [1﹣ ]<


【解析】(1)由条件等差中项、等比中项的定义,求得:an+1﹣an=2,可得数列{an}为公差d=2的等差数列,再结合a1=1,求得{an}的通项公式.(2)先化简数列{bn}的通项公式,再利用裂项法求得它的前n项和,可得结论.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

1)两种大树各成活1株的概率;

2)成活的株数的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an , an+1是方程x2﹣(2n+1)x+ 的两个根,则数列{bn}的前n项和Sn=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 ),且函数的图象在点处的切线与函数的图象在点处的切线重合.

(1)求实数 的值;

(2)记函数,是否存在最小的正常数,使得当时,对于任意正实数,不等式恒成立?给出你的结论,并说明结论的合理性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,an>0,a1= ,如果an+1是1与 的等比中项,那么a1+ + + +… 的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
(1)求△ABC的周长;
(2)求cos(A﹣C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E、F、G、H分别为AA1、AB、BB1、B1C1的中点,则异面直线EF与GH所成的角等于(

A.45°
B.60°
C.90°
D.120°

查看答案和解析>>

同步练习册答案