精英家教网 > 高中数学 > 题目详情
7.一动圆与圆${F_1}:{(x+1)^2}+{y^2}=9$内切,与圆${F_2}:{(x-1)^2}+{y^2}=1$外切.
(1)求动圆圆心M的轨迹L的方程;
(2)设过圆心F2的直线l:x=my+1与轨迹L相交于A,B两点,请问△ABF1的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由.

分析 (1)利用圆${F_1}:{(x+1)^2}+{y^2}=9$内切,与圆${F_2}:{(x-1)^2}+{y^2}=1$外切,可得|MF1|+MF2|=4,由椭圆定义知M在以F1,F2为焦点的椭圆上,从而可得动圆圆心M的轨迹L的方程;
(2)表示出三角形的面积,利用换元法,结合函数的单调性,求得最值,即可求得结论.

解答 解:(1)设动圆圆心为M(x,y),半径为R,由题意,得|MF1|=R+1,|MF2|=3-R,
所以|MF1|+MF2|=4,由椭圆定义知M在以F1,F2为焦点的椭圆上,且a=2,c=1,
∴b2=a2-c2=4-1=3.
动圆圆心M的轨迹L的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(2)设A(x1,y1),B(x2,y2)(y1>0,y2<0),
则${S_{△AB{F_1}}}=\frac{1}{2}|{F_1}{F_2}||{y_1}-{y_2}|=|{y_1}-{y_2}|=\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}$,
由$\left\{\begin{array}{l}x=my+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$,得(3m2+4)y2+6my-9=0,
∴$\left\{\begin{array}{l}{y_1}+{y_2}=-\frac{6m}{{3{m^2}+4}}\\{y_1}{y_2}=-\frac{9}{{3{m^2}+4}}\end{array}\right.$,${S_{△AB{F_1}}}=\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=\sqrt{\frac{36}{{{{(3{m^2}+4)}^2}}}+\frac{36}{{3{m^2}+4}}}=\frac{{12\sqrt{{m^2}+1}}}{{3{m^2}+4}}$,
令$t=\sqrt{{m^2}+1}$,则t≥1,且m2=t2-1,有${S_{△AB{F_1}}}=\frac{12t}{{3{t^2}+1}}=\frac{4}{{t+\frac{{\frac{1}{3}}}{t}}}$,
∵$f(t)=t+\frac{{\frac{1}{3}}}{t}$在[1,+∞)递增,∴$f(t)>f(1)=\frac{4}{3}$,
∴${S_{△AB{F_1}}}≤3$,此时t=1,m=0,
∴存在直线l:x=1,△ABF1的面积最大值为3.

点评 本题考查轨迹方程的求法,考查椭圆的定义,考查学生分析解决问题的能力,解题的关键是正确运用椭圆的定义,利用韦达定理解题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)解不等式log${\;}_{\frac{1}{2}}$(x+2)>-3 
(2)计算:($\frac{1}{8}$)${\;}^{\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.方程$\frac{x^2}{k-2}+\frac{y^2}{5-k}$=1表示双曲线的一个充分不必要条件是(  )
A.2<k<5B.k>4C.k<1D.k<2或k>5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直角坐标系xOy中,以坐标原点O为圆心的圆与直线$y=x+2\sqrt{2}$相切.
(1)求圆O的方程;
(2)圆O与x轴交于A,B两点,圆内动点P,使得|PA|,|PO|,|PB|成等比数列,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ax2+bx-1图象上在点P(-1,3)处的切线与直线y=-3x平行,则函数f(x)的解析式是f(x)=-x2-5x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α,β及直线a满足α⊥β,α∩β=AB,a∥α,a⊥AB,则(  )
A.a?βB.a⊥β
C.a∥βD.a与β相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{25}+\frac{y^2}{9}$=1的左焦点为F,点M是椭圆C上一点,点N是MF的中点,O是椭圆的中点,ON=4,则点M到椭圆C的左准线的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ab<0,bc<0,则直线ax+by+c=0通过(  ) 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ab>0,下面四个等式中:
①lg(ab)=lga+lgb
②lg$\frac{b}{a}$=lga-lgb
③$\frac{1}{2}$lg($\frac{a}{b}$)2=lg$\frac{a}{b}$
④lg(ab)=$\frac{1}{lo{g}_{ab}10}$
则正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案