精英家教网 > 高中数学 > 题目详情
9.设f(x)=4cos(ωx+$\frac{π}{6}$)sinωx-cos2ωx+1,其中0<ω<2.
(Ⅰ)若x=$\frac{π}{4}$是函数f(x)的一条对称轴,求函数f(x)的周期T;
(Ⅱ)若函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数,求ω的最大值.

分析 (Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的图象的对称性,求得w的值,可得函数的周期.
(Ⅱ)由正弦函数的单调性求得f(x)的增区间,再利用函数f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上为增函数,求得w的最大值.

解答 解:函数$f(x)=4cos({ωx+\frac{π}{6}})sinωx-cos2ωx+1$=4(cosωxcos$\frac{π}{6}$-sinωxsin$\frac{π}{6}$)sinωx-cos2ωx+1
=$\sqrt{3}$sin2ωx.
(Ⅰ) 由x=$\frac{π}{4}$是函数f(x)的一条对称轴,可得2ω•$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,∴ω=2k+1,
再结合0<ω<2,求得ω=1,f(x)=$\sqrt{3}$sin2x,故T=$\frac{2π}{2}$=π.
(Ⅱ)令2kπ-$\frac{π}{2}$≤2ωx≤kπ+$\frac{π}{2}$,求得$\frac{kπ}{ω}$-$\frac{π}{4ω}$≤x≤$\frac{kπ}{ω}$+$\frac{π}{4ω}$,k∈Z,
再根据函数f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上为增函数,可得-$\frac{π}{4ω}$≤$\frac{π}{6}$,且 $\frac{π}{4ω}$≥$\frac{π}{3}$,
求得0<ω≤$\frac{3}{4}$,即ω得最大值为$\frac{3}{4}$.

点评 本题主要考查三角恒等变换,正弦函数的图象的对称性,正弦函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\left\{\begin{array}{l}{2^x},x≤1\\{log_2}x,x>1\end{array}$,则f(f(2))=2;满足不等式f(x)≤4的x的取值范围是x≤16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列各组函数中,表示同一个函数的是(  )
A.y1=$\frac{(x+3)(x-5)}{x+3}$,y2=x-5B.f(x)=x,g(x)=$\sqrt{{x}^{2}}$
C.f(x)=x,g(x)=$\root{3}{x^3}$D.$f(x)=|x|,g(x)={({\sqrt{x}})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{3{e}^{x-1},x<3}\\{lo{g}_{3}({x}^{2}-6).x≥3}\end{array}\right.$,则f(f($\sqrt{15}$))的值为3e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以下四个命题中正确命题的个数是(  )
(1)?x∈R,log2x=0;(2)?x∈R,x2>0;(3)?x∈R,tanx=0;(4)?x∈R,3x>0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,则f(f(1))+f(log2$\frac{1}{3}$)的值是(  )
A.6B.5C.$\frac{7}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3.66x3+6x4-5.2x5+x6,在x=-1.3的值时,令v0=a6,v1=v0x+a5,…,v6=v5x+a0,则v3的值是 (  )
A.-9.8205B.14.25C.-22.445D.30.9785

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A={x||x-1|>3},B={x|x2+x≤6},则A∩B=[-3,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-bx+c\\;x≥0}\\{{e}^{x}\\;x<0}\end{array}\right.$,其中b=$\frac{2}{π}$${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,c为目标函数z=2x+4y在约束条件$\left\{\begin{array}{l}{y≥0}\\{x+y-1≤0}\\{x-y+2≥0}\end{array}\right.$,内的最大值,则f(x)<10的解集为(  )
A.(-∞,0)B.[0,5)C.(-∞,5)D.(-∞,5]

查看答案和解析>>

同步练习册答案