精英家教网 > 高中数学 > 题目详情
9.已知某三棱锥的三视图如图所示,则该三棱锥的体积为$\frac{2}{3}$,它的表面积为$2+2\sqrt{5}$.

分析 由已知中的三视图,可得:该几何体是一个以俯视图为底面的三棱锥,代入锥体体积和表面积公式,可得答案.

解答 解:由已知中的三视图,可得:该几何体是一个以俯视图为底面的三棱锥,
其直观图如下图所示:

其底面ABC的面积为:$\frac{1}{2}$×2×2=2,
高VA=1,
故三棱锥的体积V=$\frac{2}{3}$,
AB=AC=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
故侧面VAB和VAC的面积均为:$\frac{1}{2}×\sqrt{5}×1$=$\frac{\sqrt{5}}{2}$,
侧面VBC的高VD=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,
故侧面VBC的面积为:$\frac{1}{2}$×$2×\sqrt{5}$=$\sqrt{5}$,
故三棱锥的表面积为:$2+2\sqrt{5}$;
故答案为:$\frac{2}{3}$,$2+2\sqrt{5}$

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,点(2,$\frac{2π}{3}$)到直线$ρsin(θ-\frac{π}{3})$=0的距离为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\sqrt{({{a^2}-1}){x^2}-({a-1})x+1}$的定义域是全体实数,那么实数a的取值范围是(-∞,-$\frac{5}{3}$]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,向量$\overrightarrow{a}$=(x,y)所对应点位于第一象限,且在向量$\overrightarrow{b}$=(1,1)方向上的投影为$\frac{\sqrt{2}}{2}$,则$\frac{1}{x}$+$\frac{2}{y}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式|x+3|-2x-1<0的解集为(x0,+∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x-m|+|x+$\frac{1}{m}$|-x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数$f(x)=\sqrt{a{x^2}+bx}$满足:对于实数a的某些值,可以找到相应正数b,使得f(x)的定义域与值域相同,那么符合条件的实数a的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知无穷数列{cn}满足cn+1=|1-|1-2cn||.
(Ⅰ)若c1=$\frac{1}{7}$,写出数列{cn}的前4项;
(Ⅱ)对于任意0<c1≤1,是否存在实数M,使数列{cn}中的所有项均不大于M?若存在,求M的最小值;若不存在,请说明理由;
(Ⅲ)当c1为有理数,且c1≥0时,若数列{cn}自某项后是周期数列,写出c1的最大值.(直接写出结果,无需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“-2<m<-$\frac{1}{3}$”是“方程$\frac{{x}^{2}}{m+3}$+$\frac{{y}^{2}}{2m+1}$表示双曲线,且方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{2m-1}$表示交点在y轴上的椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α,β是两个平面,m,n是两条直线,则下列四个结论中,正确的有②③(填写所有正确结论的编号)
①若m∥α,n∥α,则m∥n;
②若m⊥α,n∥α,则m⊥n;
③若a∥β,m?α,则m∥β;
④若m⊥n.m⊥α,n∥β,则α⊥β

查看答案和解析>>

同步练习册答案