精英家教网 > 高中数学 > 题目详情

【题目】某商场经营某种商品,在某周内获纯利(元)与该周每天销售这种商品数之间的一组数据关系如表:

(I)画出散点图;

(II)求纯利与每天销售件数之间的回归直线方程;

(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?

附注:

.

【答案】(Ⅰ)答案见解析;(Ⅱ);(Ⅲ)99.7元.

【解析】分析:(1)直接利用表格中数据描点,即可得到散点图;(2) 根据散点图及平均数公式可求出的值从而可得样本中心点的坐标,从而求可得公式中所需数据,求出再结合样本中心点的性质可得,进而可得关于的回归方程;(3)从而可得结果.

详解

(1)

(2)

回归方程为:

(3)当

所以估计当每天销售的简述为12件时,周内获得的纯利润为99.7元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点分别为 ,且经过点 .
(Ⅰ)求椭圆 的标准方程;
(Ⅱ) 的顶点都在椭圆 上,其中 关于原点对称,试问 能否为正三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合…,…,,对于…,,B=(…,,定义AB的差为

,AB之间的距离为.

Ⅰ)若,求

Ⅱ)证明:对任意,有

(i),且

(ii)三个数中至少有一个是偶数;

Ⅲ)对于,再定义一种AB之间的运算,并写出两条该运算满足的性质(不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,若对任意都有为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且)的数列一定是等差比数列,其中正确的判断是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积问题,意思是两个等高的几何体,如在同高处的截面积恒相等,则体积相等,设A,B为两个等高的几何体,p:A,B的体积相等,q:A,B在同高处的截面积不恒相等,根据祖暅原理可知,q是-p的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P(x,y)(其中y )到x轴的距离比它到点F(0,1)的距离少1.
(1)求动点P的轨迹方程;
(2)若直线l:x-y+1=0与动点P的轨迹交于A、B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差大于零的等差数列{an}的前n项和Sn,且满足a3·a5=112,a1+a7=22.

(1)求等差数列{an}的第七项a7和通项公式an

(2)若数列{bn}的通项bn=an+an+1,{bn}的前n项和Sn,写出使得Sn小于55时所有可能的bn的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列 中, ,其前 项和为 ,等比数列 的各项均为正数, ,公比为 ,且
(Ⅰ)求
(Ⅱ)设数列 满足 ,求 的前 项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体 中, ,直线 与直线 所成的角为 ,直线 与平面 所成的角为 ,则 ( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案