精英家教网 > 高中数学 > 题目详情
若正n边形的两条对角线都与直线l垂直,则直线l一定垂直于这个正n边形所在的平面,则n的取值可能是(  )
A、8B、7C、6D、5
考点:直线与平面垂直的性质
专题:空间位置关系与距离
分析:满足条件的正n边形不能有两条互相平行的对角线,所以六边形,八边形,七边形都不可能.
解答: 解:根据直线与平面垂直的性质,若正n边形的两条对角线都与直线l垂直,则直线l一定垂直于这个正n边形所在的平面,
则该多边形不能有两条互相平行的对角线,所以六边形,八边形,七边形都不可能.
故选:D.
点评:本题主要考查了直线与平面垂直的性质,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=log2(x2-4x)的定义域为(  )
A、(0,4)
B、[0,4]
C、(-∞,0)∪(4,+∞)
D、(-∞,0)∪4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,点P是椭圆C上任意一点,|PF1|+|PF2|=4,长轴长是短轴长的两倍.
(1)求椭圆C的方程;
(2)直线y=kx+m交椭圆C于A、B两点,记△AOB的面积为S,直线OA、OB的斜率分别为k1、k2,若k1、k、k2依次成等比数列且S≥
6
3
,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
sin3α
sinα+cosα
+
cos2α
1+tanα
=1-sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y∈R+,且2x+8y-xy=0,当x,y为何值时,x+y取得最小值,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲所示,点E为矩形ABCD边CD的中点,AB=2,AD=
2
,将△ADE沿AE折起到△AD1E的位置,使得D1-AE-B为直二面角,连接BD1
CD1--得到如图乙所示的几何体.
(1)证明:AE⊥BD1
(2)求二面角D1-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=2sin(x+
A
2
)cos(x+
A
2
)+2
3
cos2(x+
A
2
)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥A-BCD中,所有棱长都相等,过点A作底面BCD的垂线,垂足为H,点M是AH的中点,则∠BMC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的顶点为(2,-1)与(2,5),它的一条渐近线与直线3x-4y=0平行,则双曲线的准线方程是(  )
A、y=2±
9
5
B、x=2±
9
5
C、y=2±
12
5
D、x=2±
12
5

查看答案和解析>>

同步练习册答案