精英家教网 > 高中数学 > 题目详情

(本题满分12分) 如图,正三棱柱ABC—A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点.

(1)求证:B1P不可能与平面ACC1A1垂直;

(2)当BC1⊥B1P时,求线段AP的长;

(3)在(2)的条件下,求二面角CB1PC1的大小.

(2) AP=1     (3) arctan


解析:

(1)证明:连结B1P,假设B1P⊥平面ACC1A1,

则B1P⊥A1C1.    由于三棱柱ABC—A1B1C1为正三棱柱,

∴AA1⊥A1C1.    ∴A1C1⊥侧面ABB1A1.    ∴A1C1⊥A1B1,    即∠B1A1C1=90°.   

 这与△A1B1C1是等边三角形矛盾.    ∴B1P不可能与平面ACC1A1垂直.

(2)取A1B1的中点D,连结C1D、BD、BC1,    则C1D⊥A1B1,    又∵AA1⊥平面A1B1C1,

∴AA1⊥C1D.    ∴C1D⊥平面ABB1A1.    ∴BD是BC1在平面ABB1A1上的射影.   

∵BC1⊥B1P.    ∴BD⊥B1P.    ∴∠B1BD=90°-∠BB1P=∠A1B1P.    又A1B1=B1B=2,

    ∴△BB1D≌△B1A1P,A1P=B1D=1.    ∴AP=1.

(3)连结B1C,交BC1于点O,则BC1⊥B1C.    又BC1⊥B1P,    ∴BC1⊥平面B1CP.    过O在平面CPB1上作OE⊥B1P,交B1P于点E,连结C1E,则B1P⊥C1E,    ∴∠OEC1是二面角C-B1P-C1的平面角.

由于CP=B1P=,O为B1C的中点,连结OP,    ∴PO⊥B1C,OP·OB1=OE·B1P.∴OE=.  

∴tan∠OEC1==.∴∠OEC1=arctan. 故二面角CB1PC1的大小为arctan.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案