精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=xlnx+ax2-1,且f'(1)=-1.
(1)求a的值;
(2)若对于任意x∈(0,+∞),都有f(x)-mx≤-1,求m的最小值.

分析 (1)求出导数,利用f'(1)=-1,求解即可.
(2)设g(x)=lnx-x,则$g'(x)=\frac{1}{x}-1$,判断函数的单调性,求出最值即可得到结果.

解答 解:(1)对f(x)求导,得f'(x)=1+lnx+2ax,
所以f'(1)=1+2a=-1,解得a=-1.
(2)由f(x)-mx≤-1,得xlnx-x2-mx≤0,
因为x∈(0,+∞),所以对于任意x∈(0,+∞),都有lnx-x≤m.
设g(x)=lnx-x,则$g'(x)=\frac{1}{x}-1$,
令g'(x)=0,解得x=1,
当x变化时,g(x)与g'(x)的变化情况如下表:

x(0,1)1(1,+∞)
g'(x)+0-
g(x)极大值
所以当x=1时,g(x)max=g(1)=-1,
因为对于任意x∈(0,+∞),都有g(x)≤m成立,所以m≥-1,
所以m的最小值为-1.

点评 本题考查函数的导数的应用,函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知cosα,sinα是函数f(x)=x2-tx+t(t∈R)的两个零点,则sin2α=(  )
A.2-2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{2}$-1D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≤3\\{log_2}x,x>3\end{array}\right.$,则f(f(3))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)的定义域为D,若存在区间[m,n]⊆D使得f(x):
(Ⅰ)f(x)在[m,n]上是单调函数;
(Ⅱ)f(x)在[m,n]上的值域是[2m,2n],
则称区间[m,n]为函数f(x)的“倍值区间”.
下列函数中存在“倍值区间”的有①②④(填上所有你认为正确的序号)
①f(x)=x2; ②$f(x)=\frac{1}{x}$;③$f(x)=x+\frac{1}{x}$;   ④$f(x)=\frac{3x}{{{x^2}+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数b满足$2f({log_2}b)+f({log_{\frac{1}{2}}}b)≤3f(1)$,则实数b的取值范围是$[{\frac{1}{2},2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设集合A={1,3,5,7},B={2,3,4},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等比数列{an}的公比为q,前n项和为Sn,则“|q|=1”是“S6=3S2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{{x}^{2}ln|x|}{|x|}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,EF⊥PB交PB于点F.
(Ⅰ)求点C到平面BDE的距离;
(Ⅱ)证明:PB⊥平面DEF.

查看答案和解析>>

同步练习册答案