精英家教网 > 高中数学 > 题目详情
过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为
 
分析:将椭圆与直线方程联立:
4x2+5y2-20=0
y=2(x-1)
,得交点A(0,-2),B(
5
3
4
3
)
,进而结合三角形面积公式计算可得答案.
解答:解:由题意知
4x2+5y2-20=0
y=2(x-1)

解方程组得交点A(0,-2),B(
5
3
4
3
)

SOAB=
1
2
•OF•|y1-y2|=
1
2
×1×|
4
3
+2|=
5
3

答案:
5
3
点评:本题考查直线与椭圆的位置关系,解题时要注意对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的位置关系只要掌握直线与椭圆的相关知识即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为(  )
A、2
B、
2
3
C、1
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网过椭圆
x2
5
+
y2
4
=1的左焦点F作椭圆的弦AB.如图
(1)求此椭圆的左焦点F的坐标和椭圆的准线方程(x=±
a2
c
);
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则弦AB的长为
5
5
3
5
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为
5
3
5
3

查看答案和解析>>

同步练习册答案