【题目】设f(x)=ex﹣e﹣x﹣x.
(1)求f(x)的单调区间;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3 . 若对所有x≥0,都有g(x)≥0成立,求实数a的取值范围.
【答案】
(1)解:f′(x)=ex+e﹣x﹣1≥2 ﹣1=2﹣1=1>0,
∴f(x)在(﹣∞,+∞)上单调递增.
(2)解:g(x)=x2f(x)+(x+1)[f(x)+(1﹣a)x]+(1﹣a)x3.
=(x2+x+1)f(x)+(1﹣a)[x3+x(x+1)]
=(x2+x+1)[f(x)+x(1﹣a)],
显然x2+x+1>0,故若使g(x)≥0,只需要f(x)+x(1﹣a)=ex﹣e﹣x﹣ax≥0即可,
令h(x)=ex﹣e﹣x﹣ax,
∴h′(x)=ex+e﹣x﹣a≥2 ﹣a=2﹣a,
①当2﹣a≥0时,即a≤2时,h′(x)≥0恒成立,
∴h(x)在[0,+∞)上为增函数,
∴h(x)≥h(0)=0,
即g(x)≥0在[0,+∞)上恒成立,
②当a>2时,则令h′(x)=0,即ex+e﹣x﹣a=0,可化为(ex)2﹣aex+1=0,
解得ex=
∴两根x1=ln =ln <0,舍去,x2=ln >0,
从而h′(x)= = ,
当0<x<x2时,则 ,ex< ,
∴h′(x)<0,
∴h(x)在[0,x2]为减函数,
又h(0)=0,
∴h(x2)<0,
∴当a>2时,h(x)≥0不恒成立,即g(x)≥0不恒成立,
综上所述a的取值范围为(﹣∞,2].
【解析】(1)先求导,再根据基本不等式即可判断f(x)在(﹣∞,+∞)上单调递增,(2)先化简g(x),再利用分析法,故若使g(x)≥0,只需要f(x)+x(1﹣a)=ex﹣e﹣x﹣ax≥0即可,构造函数h(x)=ex﹣e﹣x﹣ax,求导后,再分类讨论,求出函数的最值,即可得到参数的取值范围.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集为( )
A.(﹣∞,﹣2016)
B.(﹣2018,﹣2016)
C.(﹣2018,0)
D.(﹣∞,﹣2018)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设关于 x 的函数f(x)=lg(x2﹣2x﹣3)的定义域为集合 A,函数 g(x)=x﹣a,(0≤x≤4)的值域为集合 B.
(1)求集合 A,B;
(2)若集合 A,B 满足 A∩B=B,求实数 a 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点M(x,y)到直线l:x=3的距离是它到点D(1,0)的距离的 倍.
(1)求动点M的轨迹C的方程;
(2)设轨迹C上一动点T满足: =2λ +3μ ,其中P、Q是轨迹C上的点,且直线OP与OQ的斜率之积为﹣ .若N(λ,μ)为一动点,F1(﹣ ,0)、F2( ,0)为两定点,求|NF1|+|NF2|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(ω>0)的最小正周期为π.
(Ⅰ)求ω的值和f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)﹣m=0在区间[0,]上有两个实数解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{an}称为斐波那契数列,则 ﹣ =( )
A.0
B.﹣1
C.1
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是()万元
A.72B.80C.84D.90
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“若A则B”为真命题,而“若B则C”的逆否命题为真命题,且“若A则B”是“若C则D”的充分条件,而“若D则E”是“若B则C”的充要条件,则¬B是¬E的____条件;A是E的____条件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com