精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若是函数的一个极值点,试讨论的单调性;

2)若R上有且仅有一个零点,求的取值范围.

【答案】1)当时,上单调递减;当时,上单调递增,在上单调递减;(2.

【解析】

1)根据极值点处导数为零,计算出参数以及,再对求导,对参数进行分类讨论,从而求得该函数的单调区间;

2)分离参数,构造函数,通过讨论构造的函数的单调性求得值域,即可求得参数的取值范围.

1

因为是函数的一个极值点,

,所以

时,恒成立,

上单调递减,

时,

所以上单调递增,在上单调递减.

综上所述:

时,上单调递减;

时,上单调递增,在上单调递减.

2上有且仅有一个零点,

即方程有唯一的解,令

可得

1)当时,,所以上单调递减,

所以,所以的取值范围为.

2)当时,,所以上单调递增,

所以,即

的取值范围为.

3)当时,,所以上单调递减,

所以,即

的取值范围为.

所以,当

时,上有且只有一个零点,

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)已知函数,其中为正实数.

(1)若函数处的切线斜率为2,求的值;

(2)求函数的单调区间;

(3)若函数有两个极值点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)若求函数的单调区间

(2)若求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,是正三角形,的中点.

(1)证明:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解学生一周的课外阅读情况,随机抽取了100名学生对其进行调查.下面是根据调查结果绘制的一周学生阅读时间(单位:分钟)的频率分布直方图,且将一周课外阅读时间不低于200分钟的学生称为“阅读爱好”,低于200分钟的学生称为“非阅读爱好”.

1)根据已知条件完成下面列联表,并据此判断是否有97.5%的把握认为“阅读爱好”与性别有关?

非阅读爱好

阅读爱好

合计

男女

50

合计

14

男女

2)将频率视为概率,从该校学生中用随机抽样的方法抽取4人,记被抽取的四人中“阅读爱好”的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.

附:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5:不等式选讲

1)当时,解不等式

2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴端点为,点是椭圆上的动点,且不与重合,点满足.

(Ⅰ)求动点的轨迹方程;

(Ⅱ)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数满足任意都有的大小关系是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案