【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为(为参数,),曲线的极坐标方程为,点是与的一个交点,其极坐标为.设射线与曲线相交于,两点,与曲线相交于,两点.
(1)求,的值;
(2)求的最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,如图放置的边长为2的正方形ABCD沿轴滚动(无滑动滚动),点D恰好经过坐标原点,设顶点的轨迹方程是,则对函数的判断正确的是( )
A.函数在上有两个零点
B.函数是偶函数
C.函数在上单调递增
D.对任意的,都有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是我国大陆地区从2013年至2019年国内生产总值(GDP)近似值(单位:万亿元人民币)的数据表格:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
中国大陆地区GDP: (单位:万亿元人民币) |
为解释变量,为预报变量,若以为回归方程,则相关指数;若以为回归方程,则相关指数.
(1)判断与哪一个更适宜作为国内生产总值(GDP)近似值关于年份代号的回归方程,并说明理由;
(2)根据(1)的判断结果及表中数据,求出关于年份代号的回归方程(系数精确到);
(3)党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实视社会主义现代化.若到2035年底我国人口增长为亿人,假设到2035年世界主要中等发达国家的人均国民生产总值的频率直方图如图所示.
以(2)的结论为依据,预测我国在2035年底人均国民生产总值是否可以超过假设的2035年世界主要中等发达国家的人均国民生产总值平均数的估计值.
参考数据:,.
参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某正三棱锥的底面边长为4,侧面与底面所成二面角的余弦值为,球为该三棱锥的内切球.球与球相切,且与该三棱锥的三个侧面也相切,则球与球的表面积之比为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:在回归分析中
(1)可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好;
(2)可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;
(3)可用相关系数的值判断模型的拟合效果,越大,模型的拟合效果越好;
(4)可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.
以上结论中,不正确的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥中,顶点在底面的投影为的内心,三个侧面的面积分别为12,16,20,且底面面积为24,则三棱锥的内切球的表面积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为原点,抛物线的准线与y轴的交点为H,P为抛物线C上横坐标为4的点,已知点P到准线的距离为5.
(1)求C的方程;
(2)过C的焦点F作直线l与抛物线C交于A,B两点,若以AH为直径的圆过B,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com