精英家教网 > 高中数学 > 题目详情
11.设集合S={x|x<-5或x>5},T={x|-7<x<3},则S∩T=(  )
A.{x|-7<x<-5}B.{x|3<x<5}C.{x|-5<x<3}D.{{x|-7<x<5}

分析 利用交集定义和不等式性质求解.

解答 解:∵集合S={x|x<-5或x>5},T={x|-7<x<3},
∴S∩T={x|-7<x<-5}.
故选:A.

点评 本题考查交集的求法,解题时要认真审题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.计算:log29•log38=(  )
A.6B.8C.10D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点构成平行四边形;
④在平行四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
⑥若向$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
其中错误的命题有①②③⑥.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法中错误的是(  )
A.垂直于同一条直线的两条直线相互垂直
B.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
C.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直
D.若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.如果AB边上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,那么这样的点P有(  )
A.1个B.2个C.3个D.2个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是真命题,则实数m的最小值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若不等式(a2-3a-4)x2-(a-4)x-1<0的解集为R,则实数a的取值范围为(  )
A.(0,4)B.(0,4]C.[0,4)D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.椭圆的对称中心在坐标原点,一个顶点为A(0,2),右焦点F与点$B(\sqrt{2},\sqrt{2})$的距离为2,
(1)求椭圆的方程;
(2)斜率k≠0的直线l:y=kx-2与椭圆相交于不同的两点M,N满足|AM|=|AN|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,角A,B,C的对边分别为a,b,c,已知$b=\frac{1}{2}$,$bsinA=asin\frac{B}{2}$,则S△ABC的最大值为(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{3}}}{24}$D.$\frac{{\sqrt{3}}}{48}$

查看答案和解析>>

同步练习册答案