精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x4-2x3+3m,x∈R,若f(x)+9≥0恒成立,则实数m的取值范围是
m≥
3
2
m≥
3
2
分析:要找m的取值使f(x)+9≥0恒成立,思路是求出f′(x)并令其等于零找出函数的驻点,得到函数f(x)的最小值,使最小值大于等于-9即可求出m的取值范围.
解答:解析:因为函数f(x)=
1
2
x4-2x3+3m,
所以f′(x)=2x3-6x2
令f′(x)=0,得x=0或x=3,
经检验知x=3是函数的一个最小值点,
所以函数的最小值为f(3)=3m-
27
2

因为不等式f(x)+9≥0恒成立,即f(x)≥-9恒成立,
所以3m-
27
2
≥-9,解得m≥
3
2

故答案:m≥
3
2
点评:本题考查了利用导数求闭区间上函数的最值、函数恒成立问题等等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案