精英家教网 > 高中数学 > 题目详情

【题目】.某几何体如图所示, 平面 是边长为的正三角形, ,点分别是的中点.

I)求证: 平面

II)求证:平面平面

III)求该几何体的体积.

【答案】(1)见解析(2) 见解析(3)

【解析】试题分析:(1)根据三角形中位线性质得,再根据线面平行判定定理得结论2由正三角形性质得,由平面 ,再由线面垂直判定定理得平面,最后根据面面垂直判定定理得结论3几何体为四棱锥,C到直线AB距离为高,根据锥体体积公式可得结论

试题解析:I证明:

连接

中,

分别是中点,

平面

平面

平面

II∵在等边中,

边中点,

又∵平面

点,

平面

平面平面

III将直角梯形看成底面,

点作点,

看成几何体的高,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知0<α< <β<π,tan ,cos(β﹣α)=
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:


常喝

不常喝

合计

肥胖


2


不肥胖


18


合计



30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为

1)请将上面的列表补充完整;

2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;

34名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.

参考数据:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形为矩形, 为等腰三角形, 平面平面,且 分别为的中点.

)证明: 平面

)证明:平面平面

)当上的动点满足什么条件时,使三棱锥的体积与四棱锥体积的比值为,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是(
A.平面PAB与平面PAD,PBC垂直
B.它们都分别相交且互相垂直
C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直
D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥的三个侧面均为边长是的等边三角形, 分别为 的中点.

(I)求的长.

(II)求证:

(III)求三棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.

(1)求证:CD是⊙O的切线;
(2)若AD=1,OA=2,求AC的值.

查看答案和解析>>

同步练习册答案