精英家教网 > 高中数学 > 题目详情

【题目】设集合A中含有三个元素3,x,x2﹣2x.
(1)求实数x应满足的条件;
(2)若﹣2∈A,求实数x.

【答案】(1)∵集合A中含有三个元素3,x,x2﹣2x.
∴3≠x且3≠x2﹣2x且x≠x2﹣2x,
解得:x≠3,且x≠﹣1,x≠0,
故实数x应满足x{0,﹣1,3},
(2)若﹣2∈A,则x=﹣2,或x2﹣2x=﹣2,
由x2﹣2x=﹣2无解,
故x=﹣2。
【解析】(1)根据集合元素的互异性,可得3,x,x2﹣2x互不相等,进而可得实数x应满足的条件;
(2)若﹣2∈A,则x=﹣2,或x2﹣2x=﹣2,进而可得实数x的值.
【考点精析】掌握元素与集合关系的判断是解答本题的根本,需要知道对象与集合的关系是,或者,两者必居其一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.

(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;

(2)该校有购买该种设备的两种方案, 方案:购买甲型3台; 方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1) 时,证明:

(2)当时,直线和曲线切于点,求实数的值;

(3)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x﹣a|(a∈R).
(1)若函数f(x)为偶函数,求a的值;
(2)当a>0时,若对任意的x∈[0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一企业从某条生产线上随机抽取100件产品,测量这些产品的某项技术指标值x,得到如下的频率分布表:

x

[11,13)

[13,15)

[15,17)

[17,19)

[19,21)

[21,23)

频数

2

12

34

38

10

4

(Ⅰ)作出样本的频率分布直方图,并估计该技术指标值x的平均数和众数;

(Ⅱ)若x<13或x≥21,则该产品不合格.现从不合格的产品中随机抽取2件,求抽取的2件产品中技术指标值小于13的产品恰有一件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(Ⅰ) 求图中的值;

(Ⅱ) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取2人进行座谈,求所抽取的两人中至少有一名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={﹣2,3a﹣1,a2﹣3},B={a﹣2,a﹣1,a+1},若A∩B={﹣2},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,下列四组函数中表示相等函数的是(
A.y=logax与y=(logxa)1
B.y=2x与y=logaa2x
C. 与y=x
D.y=logax2与y=2logax

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)意指,当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有( )个.
A.5
B.6
C.7
D.8

查看答案和解析>>

同步练习册答案