精英家教网 > 高中数学 > 题目详情
(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
(2)已知直线l:3x+4y-12=0与圆C:(θ为参数 )试判断他们的公共点个数;
(3)解不等式|2x-1|<|x|+1.
【答案】分析:(1)由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;
(2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比较大小得到直线与圆的位置关系,即可得到交点的个数;
(3)分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.
解答:解:(1)由题意可知(x,y)=(13,5),即
解得,所以A(2,-3);
设矩阵M的逆矩阵为,则=,即
,解得a=-1,b=3,c=-1,d=2
所以矩阵M的逆矩阵为
(2)把圆的参数方程化为普通方程得(x+1)2+(y-2)2=4,圆心(-1,2),半径r=2
则圆心到已知直线的距离d==<2=r,得到直线与圆的位置关系是相交,
所以直线与圆的公共点有两个;
(3)当x≥时,原不等式变为:2x-1<x+1,解得x<2,所以原不等式的解集为[,2);
当0≤x<时,原不等式变为:1-2x<x+1,解得x>0,所以原不等式的解集为[0,);
当x<0时,原不等式变为:1-2x<-x+1,解得x>0,所以原不等式无解.
综上,原不等式的解集为[0,2).
点评:此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
x=3-
2
2
t
y=
5
-
2
2
t
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
5
)

求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年高考试题分项版理科数学之专题十七 选修系列 题型:解答题

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分。如果多做,则按所做的前两题记分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知矩阵M=,N=,且MN=
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换作用下的像的方程。
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线L的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为=2sin
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线L交于点A,B。若点P的坐标为(3,),求∣PA∣+∣PB∣。
(3)(本小题满分7分)选修4-5:不等式选讲
已知函数f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集为,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:福建 题型:解答题

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
x=3-
2
2
t
y=
5
-
2
2
t
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
5
)

求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年福建省高考数学试卷(理科)(解析版) 题型:解答题

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=,且
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为
求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:新课标4系列选考内容(解析版) 题型:解答题

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=,且
(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为
求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案