精英家教网 > 高中数学 > 题目详情
14.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+1$,
(1)当$a=-\frac{5}{3},D=[-1,3]$时,求函数f(x)在D上的上界的最小值;
(2)记函数g(x)=f′(x),若函数$y=g[{(\frac{1}{2})^x}]$在区间D=[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出M的值;
(2)求出函数g(x)的导数,问题转化为$-\frac{2}{t}-\frac{t}{2}≤a≤\frac{1}{t}-\frac{t}{2}$在区间t∈(0,1]上恒成立.  记 $p(t)=-\frac{2}{t}-\frac{t}{2},q(t)=\frac{1}{t}-\frac{t}{2}$,根据函数的单调性求出a的范围即可.

解答 解:(1)因为$f(x)=\frac{1}{3}{x^3}+a{x^2}+x+1$,$a=-\frac{5}{3},D=[-1,3]$,
得${f^/}(x)={x^2}-\frac{10}{3}x+1=0$,…(1分)
得x=3或$\frac{1}{3}$,…(2分)
故可得函数f(x)在区间$[-1,\frac{1}{3}]$上单调递增,区间$[\frac{1}{3},3]$是单调递减.   …(3分)
因为$f(-1)=-2,f(\frac{1}{3})=\frac{94}{81},f(3)=-2$,
所以$-2≤f(x)≤\frac{94}{81}$,…5分|f(x)|≤2,故有上界M≥2,即上界的最小值是2.…(7分)
(2)因为g(x)=x2+2ax+1,…(8分)
故有函数$y=g[{(\frac{1}{2})^x}]={[{(\frac{1}{2})^x}]^2}+2a{(\frac{1}{2})^x}+1$,
令${(\frac{1}{2})^x}=t$,因为x∈[0,+∞),得t∈(0,1].
因为函数$y=g[{(\frac{1}{2})^x}]$在区间x∈[0,+∞)上是以3为上界的有界函数,
得|g(t)|≤3在区间t∈(0,1]上恒成立,
即-3≤t2+2at+1≤3,…(11分)
得$-\frac{2}{t}-\frac{t}{2}≤a≤\frac{1}{t}-\frac{t}{2}$在区间t∈(0,1]上恒成立.  …(12分)
记 $p(t)=-\frac{2}{t}-\frac{t}{2},q(t)=\frac{1}{t}-\frac{t}{2}$,
当t∈(0,1]时,$p(t)=-\frac{2}{t}-\frac{t}{2}$单调递增,
所以$p{(t)_{max}}=-\frac{5}{2}$;$q(t)=\frac{1}{t}-\frac{t}{2}$单调递减,$q{(t)_{min}}=\frac{1}{2}$,
所以实数a的取值范围是$-\frac{5}{2}≤a≤\frac{1}{2}$.       …(15分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.执行程序框图,如果输入的N的值为7,那么输出的p的值是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,直线y=x+$\sqrt{6}$与以原点为圆心,以椭圆C的短半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相较于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点P为直线$y=\frac{3}{4}x$上任一点,F1(-5,0),F2(5,0),则下列结论正确的是(  )
A.||PF1|-|PF2||>8B.||PF1|-|PF2||=8C.||PF1|-|PF2||<8D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在R上的最小正周期为$\frac{7π}{6}$的函数,且在$[-\frac{5π}{6},\frac{π}{3})$上$f(x)=\left\{\begin{array}{l}sinx,x∈[-\frac{5π}{6},0)\\ cosx+a,x∈[0,\frac{π}{3}]\end{array}\right.$,则a=-1,$f(-\frac{16π}{3})$=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x-3,x≤0\\ lnx-a,x>0\end{array}\right.({a∈R})$,若关于x的方程f(x)=k有三个不相等的实数根,则实数k的取值范围是(  )
A.(-∞,-4)B.[-4,-3]C.(-4,-3]D.[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2016年9 月4日至5日在中国杭州召开了G20峰会,会后某10国集团领导人站成前排3人后排7人准备请摄影师给他们拍照,现摄影师打算从后排7人中任意抽2人调整到前排,使每排各5人.若调整过程中另外8人的前后左右相对顺序不变,则不同调整方法的总数是(  )
A.$C_7^2A_3^2$B.$C_7^2A_5^5$C.$C_7^2A_5^2$D.$C_7^2A_4^2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中正确的是(  )
A.若p∨q为真命题,则p∧q为真命题
B.若直线ax+y-1=0与直线x+ay+2=0平行,则a=1
C.若命题“?x∈R,x2+(a-1)x+1<0”是真命题,则实数a的取值范围是a<-1或a>3
D.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求曲线C的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,当|QM|取最小值时,求直线QM的方程.

查看答案和解析>>

同步练习册答案