精英家教网 > 高中数学 > 题目详情

【题目】下列命题为真命题的是(
A.若 x>y>0,则 ln x+ln y>0
B.“φ= ”是“函数 y=sin(2x+φ) 为偶函数”的充要条件
C.?x0∈(﹣∞,0),使 3x0<4x0成立
D.已知两个平面α,β,若两条异面直线m,n满足m?α,n?β且 m∥β,n∥α,则α∥β

【答案】D
【解析】解:若 x>y>0,然后x= ,y= 则 ln x+ln y<0,所以A不正确; “φ= ”是“函数 y=sin(2x+φ)=﹣cos2x 为偶函数”,所以“φ= ”是“函数 y=sin(2x+φ) 为偶函数”的充要条件,不正确;
x0∈(﹣∞,0),使 3x0<4x0成立,由指数函数的性质,可知x<0时,y=3x的图象在y=4x , 的图象的上方,所以C不正确;
已知两个平面α,β,若两条异面直线m,n满足mα,nβ且 m∥β,n∥α,则α∥β,可过n作一个平面与平面α相交于n',由线面平行的性质定理可得n'∥n,再由线面平行的判断定理可得,n'∥β,由面面平行的判断定理可得α∥β,所以D正确;
故选:D.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0),F为其焦点,过点F的直线l交抛物线于A、B两点,过点B作x轴的垂线,交直线OA于点C,如图所示.
(Ⅰ)求点C的轨迹M的方程;
(Ⅱ)直线m是抛物线的不与x轴重合的切线,切点为P,M与直线m交于点Q,求证:以线段PQ为直径的圆过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 若Sm1=﹣2,Sm=0,Sm+1=3,其中m≥2,则nSn的最小值为(
A.﹣3
B.﹣5
C.﹣6
D.﹣9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1 (φ为参数,实数a>0),曲线C2 (φ为参数,实数b>0).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α(ρ≥0,0≤α≤ )与C1交于O、A两点,与C2交于O、B两点.当α=0时,|OA|=1;当α= 时,|OB|=2.
(Ⅰ)求a,b的值;
(Ⅱ)求2|OA|2+|OA||OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究小组在电脑上进行人工降雨模拟试验,准备用A、B、C三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如表

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

A

4次

6次

2次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟试验的统计数据
(I)求甲、乙、丙三地都恰为中雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只能是小雨或中雨即达到理想状态,记“甲、乙、丙三地中达到理想状态的个数”为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的结果是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解本市居民的生活成本,甲、乙、内三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),甲、乙、丙所调查数据的标准差分别为x1 , x2 , x3 , 则它们的大小关系为(
A.s1>s2>s3
B.s1>s3>s2
C.s3>s2>s1
D.s3>s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx+2,g(x)=x2﹣mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[ ,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)的极大值;
(2)求f(x)在区间(﹣∞,0]上的最小值;
(3)若x2+5x+5﹣aex≥0,求a的取值范围.

查看答案和解析>>

同步练习册答案