精英家教网 > 高中数学 > 题目详情
10.已知双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点分别为F1,F2,若E上存在点P使△F1F2P为等腰三角形,且其顶角为$\frac{2π}{3}$,则$\frac{a^2}{b^2}$的值是(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

分析 由题意,可得∠PF2x=60°,|PF2|=2c,P(2c,$\sqrt{3}$c),代入双曲线的方程可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,即可求出$\frac{a^2}{b^2}$的值.

解答 解:由题意,可得∠PF2x=60°,|PF2|=2c,
∴P(2c,$\sqrt{3}$c),
代入双曲线的方程可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,
∴4b4-3a4=0,
∴$\frac{a^2}{b^2}$=$\frac{2\sqrt{3}}{3}$.
故选:B.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,确定P的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若a=0.32,b=20.3,c=log0.32,则a,b,c由大到小的关系是b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个集合A={x∈R|y=$\sqrt{1-{x}^{2}}$},B={x|$\frac{x+1}{1-x}≥0$},则A∩B=(  )
A.{x|-1≤x≤1}B.{x|-1≤x<1}C.{-1,1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.形如$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$的符号叫二阶行列式,现规定$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}\\{{a}_{21}}&{{a}_{22}}\end{array}|$=a11•a22-a21•a12,如果f(θ)=$|\begin{array}{l}{sinθ}&{cosθ}\\{cos\frac{2π}{3}}&{sin\frac{7π}{3}}\end{array}|$=$|\begin{array}{l}{\sqrt{2}}&{-2\sqrt{2}}\\{1}&{-\frac{3}{2}}\end{array}|$θ∈(0,π),则θ=$\frac{π}{12}$或$\frac{7π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)若对任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.过点(0,2)且与抛物线y2=mx只有一个公共点的直线共有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列数列中,构成等比数列的是(  )
A.2,3,4,5B.1,-2,-4,8C.0,1,2,4D.16,-8,4,-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在数列{an}(n∈N*)中,设a1=a2=1,a3=2.若数列{$\frac{{a}_{n+1}}{{a}_{n}}$}是等差数列,则a6=120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,已知圆C:(x-2)2+(y+1)2=5,过点P(5,0)且斜率为k的直线l与圆C相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)若弦长|AB|=4,求直线l的方程.

查看答案和解析>>

同步练习册答案