精英家教网 > 高中数学 > 题目详情
2.定义行列式运算:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3.若将函数f(x)=$|\begin{array}{l}{-sinx}&{cosx}\\{1}&{-\sqrt{3}}\end{array}|$的图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是$\frac{π}{6}$.

分析 利用函数y=Asin(ωx+φ)的图象变换规律求得所得函数的解析式,再根据正弦函数的图象的奇偶性求得m的最小值.

解答 解:将函数f(x)=$|\begin{array}{l}{-sinx}&{cosx}\\{1}&{-\sqrt{3}}\end{array}|$=$\sqrt{3}$sinx-cosx=2sin(x-$\frac{π}{6}$)的图象向左平移m(m>0)个单位后,
所得图象对应的函数为y=2sin(x+m-$\frac{π}{6}$)为奇函数,
∴m-$\frac{π}{6}$=kπ,k∈Z,∴m的最小值为$\frac{π}{6}$,
故答案为:$\frac{π}{6}$.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}中,a1=2,a2=3,且an+1=2an+3an-1(n≥2).
(1)设bn=an+1+an,证明{bn}是等比数列.
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{5}}}{5}$,右焦点F(1,0).
(1)求椭圆方程;
(2)过F作斜率为1的直线l与椭圆C交于A,B两点,P为椭圆上一动点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“对任意x∈R,都有x2≥0”的否定为(  )
A.对任意x∈R,使得x2<0B.不存在x∈R,使得x2<0
C.存在x0∈R,都有$x_0^2≥0$D.存在x0∈R,都有$x_0^2<0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x2-2ax+b(x∈R),给出下列命题:
①存在实数ɑ,使f(x)为偶函数.
②若f(0)=f(2),则 f(x)的图象关于x=1对称.
③若a2-b≤0,则f(x)在区间[a,+∞)上是增函数
④若a2-b-2>0,则函数h(x)=f(x)-2有2个零点.
其中正确命题的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为$10\sqrt{6}$m(如图所示),则旗杆的高度为(  )
A.10mB.30mC.10mD.10m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知焦点在x轴上的双曲线渐近线方程为$y=±\frac{2}{3}x$,则此双曲线的离心率等于(  )
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{{\sqrt{13}}}{2}$C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角θ的终边上一点P(a,-1)(a≠0),且tanθ=-a,则sinθ的值是(  )
A.±$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是等比数列,满足a1=3,a4=24,数列{an+bn}是首项为4,公差为1的等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案