精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)证明:函数上存在唯一的零点;

2)若函数在区间上的最小值为1,求的值.

【答案】1)证明见解析;(2

【解析】

1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明上存在唯一的零点即可;

2)根据导函数零点,判断出的单调性,从而可确定,利用以及的单调性,可确定出之间的关系,从而的值可求.

1)证明:∵,∴.

在区间上单调递增,在区间上单调递减,

∴函数上单调递增.

,令

上单调递减,,故.

,则

所以函数上存在唯一的零点.

2)解:由(1)可知存在唯一的,使得,即*.

函数上单调递增.

∴当时,单调递减;当时,单调递增.

.

由(*)式得.

,显然是方程的解.

又∵是单调递减函数,方程有且仅有唯一的解

代入(*)式,得,∴,即所求实数的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当的单调区间和极值

(2)若直线是曲线的切线的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

1)求证:平面

2)求平面与平面所成二面角的正弦值;

3)若点在线段上,且直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.

(Ⅰ)求抛物线方程;

(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.

1)求曲线的参数方程;

2)直线的参数方程为(为参数),求曲线上到直线的距离最短的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为t为参数),以坐标原点为极点,正半轴为极轴,建立极坐标系,曲线的极坐标方程是

1)写出直线的极坐标方程与曲线的直角坐标方程;

2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数,它的导函数为.

(1)当时,求的零点;

(2)若函数存在极小值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点,且

1)求的取值范围;

2)证明:随着的增大而减小;

3)证明:随着的增大而减小.

查看答案和解析>>

同步练习册答案