【题目】已知函数.
(1)证明:函数在上存在唯一的零点;
(2)若函数在区间上的最小值为1,求的值.
【答案】(1)证明见解析;(2)
【解析】
(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明在上存在唯一的零点即可;
(2)根据导函数零点,判断出的单调性,从而可确定,利用以及的单调性,可确定出之间的关系,从而的值可求.
(1)证明:∵,∴.
∵在区间上单调递增,在区间上单调递减,
∴函数在上单调递增.
又,令,,
则在上单调递减,,故.
令,则
所以函数在上存在唯一的零点.
(2)解:由(1)可知存在唯一的,使得,即(*).
函数在上单调递增.
∴当时,,单调递减;当时,,单调递增.
∴.
由(*)式得.
∴,显然是方程的解.
又∵是单调递减函数,方程有且仅有唯一的解,
把代入(*)式,得,∴,即所求实数的值为.
科目:高中数学 来源: 题型:
【题目】如图,已知梯形中,,,,四边形为矩形,,平面平面.
(1)求证:平面;
(2)求平面与平面所成二面角的正弦值;
(3)若点在线段上,且直线与平面所成角的正弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.
(Ⅰ)求抛物线方程;
(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,将曲线向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,的极坐标方程为.
(1)求曲线的参数方程;
(2)直线的参数方程为(为参数),求曲线上到直线的距离最短的点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(t为参数),以坐标原点为极点,正半轴为极轴,建立极坐标系,曲线的极坐标方程是.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com