精英家教网 > 高中数学 > 题目详情

如图,设椭圆的左右焦点为,上顶点为,点关于对称,且
(1)求椭圆的离心率;
(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值。

(1);(2)4.

解析试题分析:本题主要考查椭圆的标准方程、勾股定理、点到直线的距离、直线与圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先通过对称性得到B点坐标,利用两点间距离公式得的3个边长,利用勾股定理列出关系式,化简出离心率e的值;第二问,利用第一问知是边长为a的正三角形,利用三角形面积,得到a的值,从而得到b和c的值,由于,所以圆是以为圆心,为半径,则可直接写出圆的方程,因为点p到直线的最大距离为圆心到直线的距离加上半径,所以利用点到直线的距离公式计算即可.
试题解析:(1)
及勾股定理可知,即
因为,所以,解得
(2)由(1)可知是边长为的正三角形,所以
解得
可知直角三角形的外接圆以为圆心,半径
即点在圆上,
因为圆心到直线的距离为
故该圆与直线相切,所以点到直线的最大距离为
考点:椭圆的标准方程、勾股定理、点到直线的距离、直线与圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左,右两个顶点分别为.曲线是以两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点
(1)求曲线的方程;
(2)设两点的横坐标分别为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设A,B分别为椭圆=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知线段的中点为,动点满足为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆.
(1)求椭圆的离心率;
(2)设为原点,若点在椭圆上,点在直线上,且,试判断直线与圆的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设抛物线的准线与x轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是        

查看答案和解析>>

同步练习册答案