精英家教网 > 高中数学 > 题目详情

【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )

A. B. C. D.

【答案】D

【解析】依据题意: 踢了场, 队与队未踢过,则C队参加的比赛为:

D踢了场, 队与队也未踢过,则D队参加的比赛为:

以上八场比赛中, 包含了队参加的两场比赛,

分析至此, 三队参加的比赛均已经确定,余下的比赛在中进行,

已经得到的八场比赛中,A,B各包含一场,则在中进行的比赛中, 各踢了2场,即余下的比赛为:

综上可得,第一周的比赛共11场:

队踢的比赛的场数是.

本题选择D选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为梯形, ,平面 平面 .

(1)求证:

(2)是否存在点,到四棱锥各顶点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高中男生身高统计调查数据显示:全省名男生的身高服从正态分布,现从该生某校高三年级男生中随机抽取名测量身高,测量发现被测学生身高全部介于之间,将测量结果按如下方式分成组:第一组,第二组,…,第六组,下图是按照上述分组方法得到的频率分布直方图.

(1)求该学校高三年级男生的平均身高;

(2)求这名男生中身高在以上(含)的人数;

(3)从这名男生中身高在以上(含)的人中任意抽取人,该中身高排名(从高到低)在全省前名的人数记为,求的数学期望.

(附:参考数据:若服从正态分布,则 .)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的最小值;

(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论:

①若,则“”成立的一个充分不必要条件是“,且”;

②存在,使得

③若函数的导函数是奇函数,则实数

④平面上的动点到定点的距离比轴的距离大1的点的轨迹方程为.

其中正确结论的序号为_________.(填写所有正确的结论序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆系方程 ( ) 是椭圆的焦点, 是椭圆上一点,且.

(1)求的离心率并求出的方程;

2为椭圆上任意一点,过且与椭圆相切的直线与椭圆交于 两点,点关于原点的对称点为求证: 的面积为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为 分别为椭圆的上顶点和右焦点, 的面积为,直线与椭圆交于另一个点,线段的中点为.

(1)求直线的斜率;

(2)设平行于的直线与椭圆交于不同的两点 ,且与直线交于点,求证:存在常数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次环保知识竞赛活动. 为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数得分取正整数,满分为100分作为样本样本容量为进行统计. 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图图中仅列出了得分在[50,60,[90,100]的数据.

1求样本容量和频率分布直方图中的的值;

2在选取的样本中,从竞赛成绩是80分以上含80分的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在[80,90的学生人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案