精英家教网 > 高中数学 > 题目详情
某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是(  )
A、a11+a12+…+a1m+a21+a22+…+a2m
B、a11+a21+…+am1+a12+a22+…+am2
C、a11a12+a21a22+…+am1am2
D、a11a21+a12a22+…+a1ma2m
考点:进行简单的合情推理
专题:推理和证明
分析:由已知中aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n,可知:ai1ai2表示第i名买家同时购买第1类和第2类商品,进而得到答案.
解答: 解:∵aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n,
∴ai1ai2表示第i名买家同时购买第1类和第2类商品,
∴同时购买第1类和第2类商品的人数是a11a12+a21a22+…+am1am2
故选:C
点评:本题考查的知识点是进行简单的合情推理,其中正确理解aij=
1,第i名买家购买第j类商品
0,第i名买家不购买第j类商品
1≤i≤m,1≤j≤n的含义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x,y},B={1,xy},若A=B,求x,y分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-bx,g(x)=|f(x)|,其中e为自然对数的底数.
(Ⅰ)当b=1时,求函数y=f(x)的最小值.
(Ⅱ)若函数y=f(x)有且仅有一个零点,求实数b的取值范围.
(Ⅲ)当b>0时,判断函数y=g(x)在区间(0,2)上是否存在极大值,若存在,求出极大值及相应实数b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)过点A(1,
3
2
),它的一个焦点是F(-1,0).
(1)求椭圆的方程;
(2)P,Q是椭圆C上的两个动点,如果直线AP的倾斜角与AQ的倾斜角互补,证明:直线PQ定向(即该直线的斜率为定值).

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两位同学在相同的5次数学测试中,测试成绩如图所示,设
S,S分别为甲、乙两位同学数学测试成绩的标准差,则S,S
的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线上右支上存在点P,使得右焦点F关于直线OP的对称点在y轴上(O为坐标原点),则双曲线离心率的取值范围为(  )
A、(
2
3
)
B、(
2
,+∞)
C、(1,
2
)
D、(
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

AB为圆O的直径,点E、F在圆上,AB∥EF,矩形ABCD所在平面与圆O所在平面互相垂直,已知AB=2,BC=EF=1.
(Ⅰ)求证:BF⊥平面DAF;
(Ⅱ)求多面体ABCDFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-4(x≤1)
x2-2x-1(x>1)
则函数y=f(x)-log2x的零点的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|ax-1|与g(x)=(a-1)x的图象没有交点,那么实数a的取值范围是(  )
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)

查看答案和解析>>

同步练习册答案