精英家教网 > 高中数学 > 题目详情
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若¬p是¬q充分条件,求实数m的取值范围.
分析:通过绝对值不等式的解法求出命题P,二次不等式的求解命题q,利用¬p是¬q充分条件,求实数m的取值范围.
解答:解:由题意 p:-2≤x-3≤2,∴1≤x≤5,∴¬p:x<1或x>5,
q:m-1≤x≤m+1,∴¬q:x<m-1或x>m+1,
又∵¬p是¬q充分而不必要条件
m-1≥1
m+1≤5

∴2≤m≤4.
点评:本题考查绝对值不等式的解法,充要条件的判断与应用,命题的否定等知识,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若非p是非q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若¬p是¬q的充分而不必要条件,求实数m的取值范围.
(2)已知命题p:“?x∈[1,2],x2-a≥0”,命题q:“?x∈R,使x2+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是
{a|a>-2且a≠1}
{a|a>-2且a≠1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|x-3|>2,q:(x-m+1)(x-m-1)≤0,若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|x-3|≤2,q:[x-(m-1)][x-(m+1)]≤0,若¬p是¬q的充分而不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值范围为
 

查看答案和解析>>

同步练习册答案