分析 根据已知中f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{∫}_{x}^{0}(2t+2-{e}^{t})dt,x≤0}\end{array}\right.$,分析出两段上函数h(x)=f(x)+1零点的个数,综合可得答案.
解答 解:当x>0时,令h(x)=f(x)+1=lnx+1=0,解得:x=$\frac{1}{e}$,
当x≤0时,h(x)=f(x)+1=${∫}_{x}^{0}(2t+2-{e}^{t})dt$+1=${{(t}^{2}+2t-{e}^{t})|}_{x}^{0}$+1=ex-x2-2x,
令g(x)=ex-x2-2x,x≤0,
则g′(x)=ex-2x-2,
∵g′(x)>0在x≤0时恒成立,
故g(x)为增函数,
又由g(0)=1,$\lim_{x→-∞}g(x)=-∞$得,此时函数也有一个零点,
综上可得:函数h(x)=f(x)+1有2个零点.
故答案为:2
点评 本题考查的知识点是分段函数的应用,函数的零点,积分运算,难度中档.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{27}{22}$ | B. | $\frac{2}{5}$ | C. | $\frac{27}{25}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {0,1,2} | B. | {-1,0,1,2} | C. | {-1,0,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com