精英家教网 > 高中数学 > 题目详情
已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上一点,且满足
PF1
PF2
=
1
2
,则椭圆的离心率的取值范围是
 
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设PF1=x,则PF2=2x,2x+x=2a,可得x=
2
3
a,利用a-c≤x≤c+a,即可求出椭圆的离心率的取值范围.
解答: 解:设PF1=x,则PF2=2x,∴2x+x=2a,
∴x=
2
3
a,
∵a-c≤x≤c+a,
∴a-c≤
2
3
a≤c+a,
1
3
≤e<1.
故答案为:
1
3
≤e<1.
点评:本题考查椭圆的简单性质,考查学生的计算能力,利用a-c≤x≤c+a是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若过椭圆
x2
12
+
y2
3
=1内一点(2,1)的弦被该点平分,求该弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x(a∈R)
(1)当0<a<
1
2
时,f(sinx)(x∈R)的最大值为
5
4
,求f(x)的最小值;
(2)对于任意的x∈R,总有f(sinxcosx)≤1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-3,3]上随机取一个数x,使得不等式log2x≤0成立的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1的左焦点为F,点P的坐标为(2,-1),在椭圆上存在一点Q,使|QF|+
4
5
|PQ|的值最小,此最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,该程序运行后,输出的x值为31,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|2x+1|-|x|.
(1)求不等式f(x)>0的解集;
(2)若存在x∈R,使得f(x)≤m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:①y=cos(x-
π
4
)cos(x+
π
4
)的图象中相邻两个对称中心的距离为π,②y=
x+3
x-1
的图象关于点(-1,1)对称,③关于x的方程ax2-2ax-1=0有且仅有一个实根,则a=-1,④命题p:对任意x∈R,都有sinx≤1;则¬p:存在x∈R,使得sinx>1.其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程|x2-a|-x+2=0(a>0)有两个不等的实数根,则实数a的取值范围是(  )
A、0<a<4B、a>4
C、0<a<2D、a>2

查看答案和解析>>

同步练习册答案