分析 (Ⅰ)取CD的中点F,连结EF,BF,由三角形中位定理得AD∥EF,由此能证明AD∥平面EFB.
(Ⅱ)设点C到平面ABD的距离为h,由VB-ACD=VC-ABD,利用等积法能求出点C到平面ABD的距离.
解答 解:(Ⅰ)取CD的中点F,连结EF,BF,
在△ACD中,∵E,F分别为AC,DC的中点,
∴EF为△ACD的中位线,
∴AD∥EF,…2分
EF⊆平面EFB,AD?平面EFB,
∴AD∥平面EFB. …4分
(Ⅱ)设点C到平面ABD的距离为h,
∵平面ADC⊥平面ABC,且BC⊥AC,
∴BC⊥平面ADC,
∴BC⊥AD,而AD⊥DC,
∴AD⊥平面BCD,即AD⊥BD.…8分
∴S△ADB=2$\sqrt{3}$,∴三棱锥B-ACD的高BC=2$\sqrt{2}$,S△ACD=2,
∴$\frac{1}{3}×2\sqrt{2}h$=$\frac{1}{3}×2×2\sqrt{2}$
解得:h=2.∴点C到平面ABD的距离为2.…12分.
点评 本题考查使得线面平行的点的求法,考查点到平面的距离的求法,是中档题,解题时要注意等积法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1-2x=$\frac{9}{10}$ | B. | 1-2x=$\frac{10}{11}$ | C. | (1-x)2=$\frac{9}{10}$ | D. | (1-x)2=$\frac{10}{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{5}V$ | B. | $\frac{2}{5}V$ | C. | $\frac{1}{3}V$ | D. | $\frac{2}{3}V$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$ | B. | f(x)=2x,g(x)=2(x+1) | ||
C. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | D. | f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com