精英家教网 > 高中数学 > 题目详情
15.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2,点E为AC中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.

(Ⅰ)在CD上找一点F,使AD∥平面EFB;
(Ⅱ)求三棱锥C-ABC的高.

分析 (Ⅰ)取CD的中点F,连结EF,BF,由三角形中位定理得AD∥EF,由此能证明AD∥平面EFB.
(Ⅱ)设点C到平面ABD的距离为h,由VB-ACD=VC-ABD,利用等积法能求出点C到平面ABD的距离.

解答 解:(Ⅰ)取CD的中点F,连结EF,BF,
在△ACD中,∵E,F分别为AC,DC的中点,
∴EF为△ACD的中位线,
∴AD∥EF,…2分
EF⊆平面EFB,AD?平面EFB,
∴AD∥平面EFB. …4分
(Ⅱ)设点C到平面ABD的距离为h,
∵平面ADC⊥平面ABC,且BC⊥AC,
∴BC⊥平面ADC,
∴BC⊥AD,而AD⊥DC,
∴AD⊥平面BCD,即AD⊥BD.…8分
∴S△ADB=2$\sqrt{3}$,∴三棱锥B-ACD的高BC=2$\sqrt{2}$,S△ACD=2,
∴$\frac{1}{3}×2\sqrt{2}h$=$\frac{1}{3}×2×2\sqrt{2}$
解得:h=2.∴点C到平面ABD的距离为2.…12分.

点评 本题考查使得线面平行的点的求法,考查点到平面的距离的求法,是中档题,解题时要注意等积法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数$f(x)=\frac{{{{({x+1})}^0}}}{{\sqrt{1-x}}}$,则其定义域为{x|x<1且x≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为(  )
A.-$\frac{π}{8}$B.0C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过双曲线$\frac{x^2}{25}-\frac{y^2}{4}$=1的右顶点且离心率为$\frac{3}{5}$.
(1)求C的方程;
(2)求过点(3,0)且斜率为$\frac{4}{5}$的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回到原价,若这两天此股票股价的平均每天下跌的百分率为x,则x满足的方程是(  )
A.1-2x=$\frac{9}{10}$B.1-2x=$\frac{10}{11}$C.(1-x)2=$\frac{9}{10}$D.(1-x)2=$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为(  )
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y∈R,a>1,b>1,若ax=by=2,a+b=4,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>D)的离心率为$\frac{\sqrt{3}}{3}$,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为$\frac{\sqrt{2}}{2}$.
(1)求a、b的值;
(2)C上是否存在点P,使得当l绕P转到某一位置时,有$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案