精英家教网 > 高中数学 > 题目详情

【题目】某学校为加强学生的交通安全教育,对学校旁边两个路口进行了8天的检测调查,得到每天各路口不按交通规则过马路的学生人数(如茎叶图所示),且路口数据的平均数比路口数据的平均数小2.

(1)求出路口8个数据中的中位数和茎叶图中的值;

(2)在路口的数据中任取大于35的2个数据,求所抽取的两个数据中至少有一个不小于40的概率.

【答案】(1);(2).

【解析】

试题分析:(1)由茎叶图可得路口个数据中为最中间两个数,由此计算中位数,又路口个数据的平均数为,可得;(2)在路口的数据中任取个大于的数据,有种可能,其中至少有一次抽取的数据不小于的情况有种,故所求概率为.

试题解析:(1)路口8个数据的中位数为.

路口8个数据的平均数为

路口8个数据的平均数为36,

.

(2)在路口的数据中任取2个大于35的数据,有如下10种可能结果:

(36,37),(36,38),(36,42),(36,45),(37,38),(37,42),(37,45),

(38,42),(38,45),(42,45).

其中至少有一次抽取的数据不小于40的情况有如下7种:

(36,42),(36,45),(37,42),(37,45),(38,42),(38,45),(42,45).

故所求的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4—1:几何证明选讲

如图,已知圆的外接圆, ,边上的高,是圆的直径,过点作圆的切线交的延长线于点.

求证:

,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

健步走是一种方便而又有效的锻炼方式,老师每天坚持健步走,并用计步器进行统计.他最近8天健步走步数的条形统计图及相应的消耗能量数据表如下:

I)求老师这8天健步走步数的平均数;

II)从步数为16千步,17千步,18千步的6天中任选2天,设老师这2天通过健步走消耗的能量和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面 侧面1

(Ⅰ)求证:

(Ⅱ)求三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,短轴长为2,为原点,直线与椭圆的另一个交点为,且的面积是的面积的3倍

(1)求椭圆的方程;

(2)直线与椭圆相交于两点,若在椭圆上存在点,使为平行四边形,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC中点.

(1)求证:AP∥平面MBD;

(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.

(1)求曲线的交点的直角坐标;

(2)设点 分别为曲线上的动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过点A,求:

1直线在两坐标轴上的截距相等的直线方程;

2直线与两坐标轴的正半轴围成三角形面积最小时的直线方程

查看答案和解析>>

同步练习册答案