精英家教网 > 高中数学 > 题目详情
19.已知a>0,则“关于x的方程ax=b解集为{x0}”的充要条件的序号是③.
①存在x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
②存在x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
③任意x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
④任意x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0

分析 a>0,则“关于x的方程ax=b解集为{x0}”,可得x0=$\frac{b}{a}$.对于任意x∈R,作差$\frac{1}{2}$ax2-bx-($\frac{1}{2}$ax02-bx0)=$\frac{a}{2}$$(x-\frac{b}{a})^{2}$,即可判断出结论.

解答 解:a>0,则“关于x的方程ax=b解集为{x0}”,可得x0=$\frac{b}{a}$.
对于任意x∈R,则$\frac{1}{2}$ax2-bx-($\frac{1}{2}$ax02-bx0)=$\frac{a}{2}$$(x-\frac{b}{a})^{2}$≥0,即$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0
∴a>0,则“关于x的方程ax=b解集为{x0}”的充要条件的序号是③.
故答案为:③.

点评 本题考查了不等式的解法、充要条件的判定方法、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.顶点在原点,焦点是(0,-2)的抛物线方程是(  )
A.x2=8yB.x2=-8yC.y2=8xD.y2=-8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2-(2a+2)x+(2a+1)lnx.
(1)讨论函数y=f(x)的单调性;
(2)对任意的a∈[$\frac{1}{2}$,2],x1,x2∈[1,2](x1≠x2),恒有|f(x1)-f(x2)|<λ|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,求正实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.棱长为1的正方体ABCD-A1B1C1D1中,点P在线段BD上运动.
(Ⅰ)求证:AC⊥平面BB1P;
(Ⅱ)若BP=1,设异面直线B1P与AC1所成的角为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是(  )
A.非p或qB.p且qC.非p且非qD.非p或非q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知常数 a、b 满足 a>1>b>0,若f(x)=lg(ax-bx),x∈(0,+∞)
(1)证明 y=f(x)在(0,+∞)内是增函数;
(2)若 f(x)恰在(1,+∞)内取正值,且 f(2)=lg2,求 a、b 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=xex+c有两个零点,则c的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\sqrt{3-x}$+log2(x+1)的定义域为(  )
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,则有(  )
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

同步练习册答案