精英家教网 > 高中数学 > 题目详情
如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,SD=AD,DF⊥SB垂足为F,E是SD的中点.
(Ⅰ)证明:SA∥平面BDE;
(Ⅱ)证明:平面SBD⊥平面DEF.
分析:(Ⅰ)利用线面平行的判定证明SA∥平面BDE,连接AC,AC∩BD=O,利用三角形的中位线,证明EO∥SA即可;
(Ⅱ)先证明DE⊥面SBC,可得DE⊥SB,利用DF⊥SB,DE∩DF=D,可证SB⊥平面DEF,利用面面垂直的判定可得结论.
解答:证明:(Ⅰ)连接AC,AC∩BD=O,连接OE,则O为AC的中点

∵E是SD的中点,∴EO∥SA
∵SA?平面BDE,EO?平面BDE
∴SA∥平面BDE;
(Ⅱ)∵E是SD的中点,底面ABCD为正方形,侧棱SD⊥底面ABCD,SD=AD,
∴DE⊥SC,BC⊥DE
∵SC∩BC=C
∴DE⊥面SBC
∵SB?面SBC
∴DE⊥SB
∵DF⊥SB,DE∩DF=D
∴SB⊥平面DEF
∵SB?平面SBD
∴平面SBD⊥平面DEF.
点评:本题考查线面平行,考查面面垂直,解题的关键是掌握线面平行、面面垂直的判定方法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明EF∥平面SAD;
(2)设SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步练习册答案