精英家教网 > 高中数学 > 题目详情
若集合A={a|a≤100,a=3k,k∈N*},集合B={b|b≤100,b=2k,k∈N*},在A∪B中随机地选取一个元素,则所选取的元素恰好在A∩B中的概率为
 
分析:集合A有33个元素,集合B有50个元素,A∩B中的数构成以6为首项,以6为公差的等差数列,共有16个.
解答:解:集合A={a|a≤100,a=3k,k∈N*}={3,6,9,12,15,18,21,24…99} 共有33个元素,这33个数构成以3
为首项,以3为公差的等差数列.
集合B={b|b≤100,b=2k,k∈N*}={2,4,6,8,12,10,14,16,18…100} 共有50个元素,这50个数构成以2
为首项,以2为公差的等差数列.
A∩B中的数构成以6为首项,以6为公差的等差数列,共有16个.
A∪B中不同的数共有33+50-16=67个,所选取的元素恰好在A∩B中的概率为
16
67

故答案为
16
67
点评:本题考查等可能事件的概率的求法,求等差数列的项数,求出A∩B中的数的个数、A∪B中不同的数 的个数,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(Ⅱ)对任何具有性质P的集合A,证明:n≤
k(k-1)2

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个集合A={
a
|
a
=(cosα,4-cos2α),α∈R}
B={
b
|
b
=(cosβ,λ+sinβ),β∈R}
,若A∩B≠∅,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(Ⅰ)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;
(Ⅱ)设集合A是“好集”,求证:若x,y∈A,则x+y∈A;
(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.
命题p:若x,y∈A,则必有xy∈A;
命题q:若x,y∈A,且x≠0,则必有
y
x
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(Ⅰ)分别判断集合B={-1,0,1},有理数集Q是否是“好集”,并说明理由;
(Ⅱ)设集合A是“好集”,求证:若x-y∈A,则x+y∈A;
(Ⅲ)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.
命题p:若x,y∈A,则必有xy∈A;
命题q:若x,y∈A,且x≠0,则必有
y
x
∈A

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,
1
x
∈A
.则称集合A是“好集”.
(1)集合B={-1,0,1}是好集;
(2)有理数集Q是“好集”;
(3)设集合A是“好集”,若x,y∈A,则x+y∈A;
(4)设集合A是“好集”,若x,y∈A,则必有xy∈A;
(5)对任意的一个“好集A”,若x,y∈A,且x≠0,则必有
y
x
∈A

则上述命题正确的个数有(  )

查看答案和解析>>

同步练习册答案